Filtering genes using FLUSH

Stefano Calza
calza®Omed.unibs.it
http://www.biostatistics.it

July 21, 2009

Contents

1 Introduction

This document describes the flow-chart procedure for filtering genes in an experiment
based on Affymetrix expression microarray data.
The FLUSH method for filtering genes is based on robust linear models fitted at the

probe level.
After starting R, you should load the FLUSH.LVS.bundle package.

2 Fitting the robust linear models

The first thing to do is get an object of class AffyBatch. This can be done reading in
CEL files using the function ReadAffy in the affy package. In this vignette we will use the
data from Choe et al., available as an R data object here http://www.biostatistics.
it/library/FLUSH.RData.

To read the data in R we can do as follows, where we assume that the “choe.RData”
file is in the working directory.

> load("FLUSH.RData")
The we load the FLUSH.LVS.bundle package.
> library(FLUSH.LVS.bundle)

The first step is to compute the arrays effect and residual standard deviation. The
following code do so.

http://www.biostatistics.it
http://www.biostatistics.it/library/FLUSH.RData
http://www.biostatistics.it/library/FLUSH.RData

> RA.fit = compute.RA(choe)

Fitting models

| |
|ttt A A A |

We can now visualize the two components.

> RAplot (RA.fit)

o _]
n
o _|
o

-

Q

(]

=

= g

[0

—

-

<C

——

j -

O

[7)]
o _|
AN
o _]
—

I I I I
-2.5 -2.0 -15 -1.0

log(residual Std Dev)

3 Filtering out features

The basic idea underlying the FLUSH algorithm is that features/genes with low array
effect, that is with low variability among arrays, are most probably non interesting
features and can be removed.

Let’s assume we want to retain 40% of the features, thus we will exclude 60% of the
probesets, namely those with lower inter-array variability. The following code creates
an indicator object that can be used to subset the expression data.

> choe.fSet <- FlushSet(RA.fit, proportion = 0.6)

Any other choice of the proportion of genes to exclude can be specified with the
proportion argument.

The function FlushSet returns an object of class RA that we can plot with the
command RAplot. Setting the argument add.rq to TRUE, will overlay the quantile
regression fit to the Residuals vs Array plot.

> RAplot(choe.fSet, add.rq = TRUE)

50
|

sqrt Array Effect
30 40
N\
\

20

10

I I I I
-2.5 -2.0 -15 -1.0

log(residual Std Dev)

We are now ready to subset our expression data. The actuall expression matrix, or
more generally the object of class EpressionSet, can be computed using any available
algorithm, like RMA, MAS5, and so on.

Let’s then compute expression values using the MAS5 algorithm as implemented in
the function mas5

and subset the object to get a reduced expression matrix

> choe.flushed <- Flush(choe.MAS5, choe.fSet)
> dim(exprs(choe.flushed))

[1] 5607 6

The new EpressionSet object will now contain only a subset of the features.

Using the function Flush setting the argument onlyExprs to FALSE, will return an
object of class FLUSH that can be used for plotting the selected genes in the array vs
residual plot.

> choe.f2 <- Flush(choe.MAS5, choe.fSet, onlyExprs = FALSE)
> RAplot(choe.f2, heat = TRUE, add.rq = TRUE)

50

40
|

sqrt Array Effect

20

13.02

w

10
I NNWWWARAGIVIOR
Chomow~NOrOwou®
INNTS LR

T T T T
-2.5 -2.0 -15 -1.0

log(residual Std Dev)

4 The easy way

If we are not interested in visualazing the Residual vs Array plot after choosing the pro-
portion of genes, we can directly supply the function Flush an ExpressionSet object (e.g.
choe.MAS5) and an object coming directly from compute.RA (namely choe.RA our ex-
ample). In this case Flush will accept the same arguments as FlushSet, i.e. proportion,
lambda, delta and df. The returned object will always be of class EzpressionSet.

4

> choe.rid <- Flush(choe.MAS5, RA.fit, proportion = 0.6)
> dim(exprs(choe.rid))

[1] 5607 6
> class(choe.rid)
[1] "ExpressionSet"

attr(, "package")
[1] "Biobase"

