Exercise 5.9 (corrected)

Suppose x is $N(\mu_x, 1)$ and y is $N(\mu_y, 1)$, and they are independent. We are interested in the ratio $\theta = \mu_y/\mu_x$. Define $z \equiv y - \theta x$, so z is $N(0, 1 + \theta^2)$, which depends only on θ and can be a basis for inference for θ . The so-called Fieller's CI is based on

$$P\left(\frac{(y-\theta x)^2}{1+\theta^2} < \chi^2_{1-\alpha}\right) = 1 - \alpha.$$

Find the general conditions so that the 95% CI for θ is (i) an interval, (ii) two disjoint intervals, or (iii) the whole real line. Discuss how we should interpret part (iii). As a separate exercise, given x = -1 and y = 1.5,

- (a) find Fieller's 95% CI for θ .
- (b) plot the likelihood function of θ .
- (c) find the $100(1 \alpha)\%$ CI for θ at various values of α , so you obtain the conditions that satisfy (i), (ii) or (iii) above. Explain the result in terms of the likelihood function.
- (d) Discuss the application of confidence density concept to this problem.