List of errors for the 1st Edition of Pawitan's In All Likelihood (2001) - this edition has University College Cork as my affiliation. The list is getting depressingly long, so to keep it to a manageable length I have decided to include only errors that matter, thus excluding typos. I am grateful to many readers for finding these errors, in particular to Hiroshi Okamura.

Page 82 line 12 from the bottom: maximum likelihood function \rightarrow maximum likelihood estimate. (A Johansson)

Page 83 last line: replace $0.53<\theta<0.96 \rightarrow 0.53<\theta<0.90$.
Page 93 the t statistic in the middle of the page: the denominator $\sqrt{1 / m+1 / m} \rightarrow$ $\sqrt{1 / m+1 / n}$.

Page 93 line 8 from the bottom: $\bar{y}=840.5, s_{y}^{2}=4604.8 \rightarrow \bar{y}=838.2, s_{y}^{2}=4161.5$ (S Sandin)

Page 119 line 15: $\theta=e^{-2 \theta} \rightarrow \theta=e^{-2 \mu}$
Page 146 line 5: Exercise 5.9 has been rewritten, see the error page on the website.
Page 155 line 3: $\theta_{1} \rightarrow \theta_{i}$.
Page 160 line 7 (line 4 of the table): 'Before' column, location=4, number of accidents should be 20 instead of 30 . (The program ex6-6.r and the results are correct.)

Page $167 \operatorname{line} 9: \log L(\mu ; y)=1 / 2 \ldots \rightarrow \log L(\mu ; y)=-1 / 2 \ldots$
Page 169 line 14 from the bottom: $D\left(y, \widehat{\mu}_{A}\right)$ and $D\left(y, \widehat{\mu}_{A}\right) \rightarrow D\left(y, \widehat{\mu}_{A}\right)$ and $D\left(y, \widehat{\mu}_{B}\right)$
Page 171 line 16 from the bottom: $16.26 / 7 \rightarrow 16.28 / 7$
Page 175 line 3 from the bottom: $\beta^{1}=\beta^{0}+U^{-1} S(\beta) \rightarrow \beta^{1}=\beta^{0}+U^{-1} S\left(\beta^{0}\right)$
Page 185 Figure 6.11(b) is wrong. Please use the corrected R program ex6-19b.r to get the correct figure.

Page 186 line 13: ...AIC is $177.2 \ldots \rightarrow$...AIC is 131.4... Line 14: ...pointing to the Cauchy model... \rightarrow...pointing to the normal model... (There was a bug in the R program pointed out by Harry Southworth.)

Page 191 line 2: where β_{i} is negative \rightarrow where β_{1} is negative
Page 192 line 1: iterative reweighted least squares (IRLS) \rightarrow iterative weighted least squares (IWLS).

Page 199 line 7: Section $7.2 \rightarrow$ Section 3.2.
Page 208 line 14: $P(2 \mid H 2) / P(0 \mid H 0) \rightarrow P(2 \mid H 2) / P(2 \mid H 0)$
Page 219 line 3 from the bottom: $\int S(\theta)^{2} f_{\theta}(x) d x \rightarrow \int S(\theta)^{2} p_{\theta}(x) d x$
Page 225 line 14: $E_{\theta}\{E(U \mid T)-U\}=0 \rightarrow E_{\theta}\{E(T \mid U)-T\}=0$. Line 16: $U-E(U \mid T)=$ $0 \rightarrow T-E(T \mid U)=0$. Line 17: $U=g(T) \rightarrow T=g(U)$.

Page 249 line 11: $I(\widehat{\theta})=\sigma^{2} / n \rightarrow I(\widehat{\theta})=n / \sigma^{2}$
Page 250 line 18: $|I(\widehat{\theta})| \rightarrow|I(\widehat{\theta})|^{1 / 2}$
Page 251 line 4: $n(\beta \log \beta / \mu-\widehat{\beta} \log \widehat{\beta} / \widehat{\mu}) \rightarrow n(\beta \log \beta / \mu-\widehat{\beta} \log \widehat{\beta} / \mu)$
Page 266 line 11: Section $3.3 \rightarrow$ Section 3.4
Page 267 line 2: $y-\sigma_{y x} \sigma_{x x}\left(x-\mu_{x}\right) \rightarrow y-\sigma_{y x} \sigma_{x x}^{-1}\left(x-\mu_{x}\right)$
Page 267 line 12: under $H_{0}: \theta=\theta_{10} \rightarrow$ under $H_{0}: \theta_{1}=\theta_{10}$, and assuming $I(\widehat{\theta})=I\left(\widehat{\theta}_{0}\right)$
Page 276 line 1 from the bottom: $L(\theta, \psi) \rightarrow L(\theta, \eta)$
Page 280 line 20: $=-\sum_{i} \log \left(\beta_{0}+\beta_{1} x_{i}\right)-\ldots \rightarrow=\sum_{i} \log \left(\beta_{0}+\beta_{1} x_{i}\right)-\ldots$
Page 280 line 1 from the bottom: $w_{1}, \ldots, w_{N} \rightarrow \mu_{1}, \ldots, \mu_{N}$
Page 283 line 1: θ_{1} and $\theta_{2} \rightarrow \theta_{a}$ and θ_{p}
Page 283 line 4 and 7: $n_{b} \theta_{b} \rightarrow n_{p} \theta_{p}$ and $n_{b} \rightarrow n_{p}$
Page 293 line 15 from the bottom: $\sqrt{n} S\left(\theta_{0}, \eta_{0}\right) \rightarrow n^{-1 / 2} S\left(\theta_{0}, \eta_{0}\right)$
Page 295 line 7: $\ldots-\eta \sum \log y_{i} \ldots \rightarrow \ldots+\eta \sum_{i} \log y_{i} \ldots$
Page 295 line 10: $\sum_{i} \log y_{i}=n \log \widehat{\eta} / \hat{\theta}-n \log \widehat{\theta}-n D(\widehat{\eta})+n \rightarrow \sum_{i} \log y_{i}=n \log \widehat{\eta} / \widehat{\theta}-$ $n D(\widehat{\eta})$

Page 295 line 2 from the bottom: $-\frac{n-p}{2} \log \left\{2 \pi \phi v\left(y_{i}\right)\right\}-\frac{1}{2 \phi} D\left(y_{i}, \widehat{\mu}_{i}\right) \rightarrow-\frac{n-p}{2} \log (2 \pi \phi)-$ $\frac{1}{2 \phi} \sum_{i} D\left(y_{i}, \widehat{\mu}_{i}\right)$
Page 320 line 15 and 16: $N(t+d t)-N(d t) \rightarrow N(t+d t)-N(t)$
Page 333 line 15: ... $e^{\alpha\left(t_{i j}\right)+x_{i j}^{\prime} \beta} \rightarrow \ldots e^{\alpha\left(t_{i j}\right)+x_{k j}^{\prime} \beta}$
Page 339 line 13 from the bottom: $\theta \rightarrow \beta$
Page 353, last equation (line 9 from the bottom): $\ldots+\frac{k+1}{2} \log w_{i}-\cdots-\frac{w_{i}\left(y_{i}-\mu_{i}\right)^{2}}{\sigma^{2}} \rightarrow$ $\ldots+\frac{k-1}{2} \log w_{i}-\cdots-\frac{w_{i}\left(y_{i}-\mu_{i}\right)^{2}}{2 \sigma^{2}}$
Page 355 line 2 from the bottom: $\log \left(\theta ; x_{i}\right) \rightarrow \log L\left(\theta ; x_{i}\right)$
Page 368 line 3 from the bottom: $g(x)=(1 / 6) x^{3} e^{-3} \rightarrow g(x)=(1 / 6) x^{3} e^{-x}$
Page 371 line 12 from the bottom: $E \rightarrow e$ in the exponentiation
Page 378 line 3 from the bottom: Section $2.6 \rightarrow$ Section 3.5
Page 380 line 3: $\lambda\left(\theta_{k}\right)=0 \rightarrow \lambda^{\prime}\left(\theta_{k}\right)=0$.
Page 382 line 8 and 9: $\theta_{i k} \rightarrow \theta_{k i}$
Page 382 line 8 from the bottom: $\ldots \frac{1}{n} \mathcal{I}_{k}^{-1} \ldots \rightarrow \ldots-\frac{1}{n} \mathcal{I}_{k}^{-1} \ldots$
Page 383 line 3: ...normal model is $4.89 / n \rightarrow$...log-normal model is $4.89 / n$

Page 383 equation on line 9 from the bottom: $x_{i}^{p} \rightarrow x_{i}^{k}$
Page 396 line 8 and 12: $x_{i} \beta \rightarrow x_{i}^{\prime} \beta$
Page 397 line 3 from the bottom: $x_{i} \beta^{0} \rightarrow x_{i}^{\prime} \beta^{0}$
Page 413, last equation (line 6 from the bottom): on the left-hand-side: $h(t, \theta) \rightarrow h(\theta, t)$.
Page 414, line 13: $p\left(\theta, t_{o b s}\right) \rightarrow h\left(\theta, t_{o b s}\right)$.
Page 428 line 6 from the $\operatorname{bottom:~} \operatorname{binomial}(y, x / n) \rightarrow \operatorname{binomial}(m, x / n)$
Page 433 line 6 from the bottom: $\theta^{-1} e^{x / \theta} \rightarrow \theta^{-1} e^{-x / \theta}$
Page 450 add to the legend of Table 17.1: each measurement is the mean period between heartbeats (msec).

Page 451 line 14: $78 \times 19 \rightarrow 76 \times 19$
Page 451 line 16: $\sigma_{e}^{2} I_{N=78} \rightarrow \sigma_{e}^{2} I_{N=76}$
Page 452, line 8: in the formula for interaction: remove the divisor 2, so it should be $\left(y_{i 1}+y_{i 4}\right)-\left(y_{i 2}+y_{i 3}\right)$. (The R program is correct.)

Page 452, line 15: ... average of $12.7895 \rightarrow$...average of -12.7895
Page 490, line 11: $V=\Sigma^{2}+Z D Z^{\prime} \rightarrow V=\Sigma+Z D Z^{\prime}$.

