List of errors for the 1st Edition of Pawitan's In All Likelihood (2001) – this edition has University College Cork as my affiliation. The list is getting depressingly long, so to keep it to a manageable length I have decided to include only errors that matter, thus excluding typos. I am grateful to many readers for finding these errors, in particular to Hiroshi Okamura.

Page 82 line 12 from the bottom: maximum likelihood function → maximum likelihood estimate. (A Johansson)

Page 83 last line: replace $0.53 < \theta < 0.96 \rightarrow 0.53 < \theta < 0.90$.

Page 93 the t statistic in the middle of the page: the denominator $\sqrt{1/m+1/m} \rightarrow \sqrt{1/m+1/n}$.

Page 93 line 8 from the bottom: $\bar{y} = 840.5, \ s_y^2 = 4604.8 \rightarrow \bar{y} = 838.2, \ s_y^2 = 4161.5$ (S Sandin)

Page 119 line 15: $\theta = e^{-2\theta} \to \theta = e^{-2\mu}$

Page 146 line 5: Exercise 5.9 has been rewritten, see the error page on the website.

Page 155 line 3: $\theta_1 \to \theta_i$.

Page 160 line 7 (line 4 of the table): 'Before' column, location=4, number of accidents should be 20 instead of 30. (The program ex6-6.r and the results are correct.)

Page 167 line 9: $\log L(\mu; y) = 1/2... \rightarrow \log L(\mu; y) = -1/2...$

Page 169 line 14 from the bottom: $D(y, \hat{\mu}_A)$ and $D(y, \hat{\mu}_A) \to D(y, \hat{\mu}_A)$ and $D(y, \hat{\mu}_B)$

Page 171 line 16 from the bottom: $16.26/7 \to 16.28/7$

Page 175 line 3 from the bottom: $\beta^1 = \beta^0 + U^{-1}S(\beta) \to \beta^1 = \beta^0 + U^{-1}S(\beta^0)$

Page 185 Figure 6.11(b) is wrong. Please use the corrected R program ex6-19b.r to get the correct figure.

Page 186 line 13: ...AIC is 177.2... → ...AIC is 131.4... Line 14: ...pointing to the Cauchy model... → ...pointing to the normal model... (There was a bug in the R program – pointed out by Harry Southworth.)

Page 191 line 2: where β_i is negative \rightarrow where β_1 is negative

Page 192 line 1: iterative reweighted least squares (IRLS) \rightarrow iterative weighted least squares (IWLS).

Page 199 line 7: Section $7.2 \rightarrow$ Section 3.2.

Page 208 line 14: $P(2|H2)/P(0|H0) \rightarrow P(2|H2)/P(2|H0)$

Page 219 line 3 from the bottom: $\int S(\theta)^2 f_{\theta}(x) dx \to \int S(\theta)^2 p_{\theta}(x) dx$

Page 225 line 14: $E_{\theta}\{E(U|T) - U\} = 0 \to E_{\theta}\{E(T|U) - T\} = 0$. Line 16: $U - E(U|T) = 0 \to T - E(T|U) = 0$. Line 17: $U = g(T) \to T = g(U)$.

Page 249 line 11: $I(\widehat{\theta}) = \sigma^2/n \to I(\widehat{\theta}) = n/\sigma^2$

Page 250 line 18: $|I(\hat{\theta})| \to |I(\hat{\theta})|^{1/2}$

Page 251 line 4: $n(\beta \log \beta/\mu - \hat{\beta} \log \hat{\beta}/\hat{\mu}) \rightarrow n(\beta \log \beta/\mu - \hat{\beta} \log \hat{\beta}/\mu)$

Page 266 line 11: Section $3.3 \rightarrow$ Section 3.4

Page 267 line 2: $y - \sigma_{yx}\sigma_{xx}(x - \mu_x) \to y - \sigma_{yx}\sigma_{xx}^{-1}(x - \mu_x)$

Page 267 line 12: under H_0 : $\theta = \theta_{10} \to \text{under } H_0$: $\theta_1 = \theta_{10}$, and assuming $I(\widehat{\theta}) = I(\widehat{\theta}_0)$

Page 276 line 1 from the bottom: $L(\theta, \psi) \to L(\theta, \eta)$

Page 280 line 20: $= -\sum_{i} \log(\beta_0 + \beta_1 x_i) - ... \rightarrow = \sum_{i} \log(\beta_0 + \beta_1 x_i) - ...$

Page 280 line 1 from the bottom: $w_1, ..., w_N \rightarrow \mu_1, ..., \mu_N$

Page 283 line 1: θ_1 and $\theta_2 \to \theta_a$ and θ_p

Page 283 line 4 and 7: $n_b\theta_b \to n_p\theta_p$ and $n_b \to n_p$

Page 293 line 15 from the bottom: $\sqrt{n}S(\theta_0, \eta_0) \rightarrow n^{-1/2}S(\theta_0, \eta_0)$

Page 295 line 7: ... – $\eta \sum \log y_i$... \rightarrow ... + $\eta \sum_i \log y_i$...

Page 295 line 10: $\sum_{i} \log y_{i} = n \log \widehat{\eta} / \widehat{\theta} - n \log \widehat{\theta} - n D(\widehat{\eta}) + n \rightarrow \sum_{i} \log y_{i} = n \log \widehat{\eta} / \widehat{\theta} - n D(\widehat{\eta})$

Page 295 line 2 from the bottom: $-\frac{n-p}{2} \log\{2\pi\phi v(y_i)\} - \frac{1}{2\phi}D(y_i, \hat{\mu}_i) \to -\frac{n-p}{2} \log(2\pi\phi) - \frac{1}{2\phi}\sum_i D(y_i, \hat{\mu}_i)$

Page 320 line 15 and 16: $N(t+dt) - N(dt) \rightarrow N(t+dt) - N(t)$

Page 333 line 15: ... $e^{\alpha(t_{ij})+x'_{ij}\beta} \rightarrow ... e^{\alpha(t_{ij})+x'_{kj}\beta}$

Page 339 line 13 from the bottom: $\theta \to \beta$

Page 353, last equation (line 9 from the bottom): ... + $\frac{k+1}{2} \log w_i - \cdots - \frac{w_i(y_i - \mu_i)^2}{\sigma^2} \rightarrow \cdots + \frac{k-1}{2} \log w_i - \cdots - \frac{w_i(y_i - \mu_i)^2}{2\sigma^2}$

Page 355 line 2 from the bottom: $\log(\theta; x_i) \to \log L(\theta; x_i)$

Page 368 line 3 from the bottom: $g(x) = (1/6)x^3e^{-3} \rightarrow g(x) = (1/6)x^3e^{-x}$

Page 371 line 12 from the bottom: $E \rightarrow e$ in the exponentiation

Page 378 line 3 from the bottom: Section $2.6 \rightarrow$ Section 3.5

Page 380 line 3: $\lambda(\theta_k) = 0 \rightarrow \lambda'(\theta_k) = 0$.

Page 382 line 8 and 9: $\theta_{ik} \rightarrow \theta_{ki}$

Page 382 line 8 from the bottom: $...\frac{1}{n}\mathcal{I}_k^{-1}... \rightarrow ... - \frac{1}{n}\mathcal{I}_k^{-1}...$

Page 383 line 3: ...normal model is $4.89/n \rightarrow ...$ log-normal model is $4.89/n \rightarrow ...$

Page 383 equation on line 9 from the bottom: $x_i^p \to x_i^k$

Page 396 line 8 and 12: $x_i\beta \to x_i'\beta$

Page 397 line 3 from the bottom: $x_i\beta^0 \to x_i'\beta^0$

Page 413, last equation (line 6 from the bottom): on the left-hand-side: $h(t, \theta) \to h(\theta, t)$.

Page 414, line 13: $p(\theta, t_{obs}) \rightarrow h(\theta, t_{obs})$.

Page 428 line 6 from the bottom: binomial $(y, x/n) \to \text{binomial}(m, x/n)$

Page 433 line 6 from the bottom: $\theta^{-1}e^{x/\theta} \to \theta^{-1}e^{-x/\theta}$

Page 450 add to the legend of Table 17.1: each measurement is the mean period between heartbeats (msec).

Page 451 line 14: $78 \times 19 \to 76 \times 19$

Page 451 line 16: $\sigma_e^2 I_{N=78} \to \sigma_e^2 I_{N=76}$

Page 452, line 8: in the formula for interaction: remove the divisor 2, so it should be $(y_{i1} + y_{i4}) - (y_{i2} + y_{i3})$. (The R program is correct.)

Page 452, line 15: ... average of $12.7895 \rightarrow ...$ average of -12.7895

Page 490, line 11: $V = \Sigma^2 + ZDZ' \rightarrow V = \Sigma + ZDZ'$.