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Nonparametric smoothing

Nonparametric smoothing or nonparametric function estimation grew enor-

mously in the 1980s. The word `nonparametric' has nothing to do with the

classical rank-based methods, such as the Wilcoxon rank test, but it is un-

derstood as follows. The simplest relationship between an outcome y and

a predictor x is given by a linear model

E(y) = �0 + �1x:

This linear model is a parametric equation with two parameters �0 and �1.

A nonparametric model would simply specify E(y) as some function of x

E(y) = f(x):

The class of all possible f(�) is `nonparametric' or in�nite dimensional.

The literature on nonparametric smoothing is vast, and we cannot hope

to do justice to it in a single chapter. We will focus on a general method-

ology that �ts well with the likelihood-based mixed e�ects modelling. The

approach is practical, treating functions with discrete rather than con-

tinuous index. This means it su�ces to deal with the usual vectors and

matrices, rather than function spaces and operators.

18.1 Motivation

Example 18.1: Figure 18.1 shows the scatter plot of SO2 level and indus-
trial activity; the latter is measured as the number of manufacturing enterprises
employing 20 or more workers. In Section 6.8 we have shown that it is sensible
to log-transform the data. Since our �rst instinct is that more industry leads to
more pollution, when faced with this dataset, we might only consider a linear
model (dotted line). A nonparametric regression estimate (solid line) suggests a
quadratic model, shown in Section 6.8 to be well supported by the data. The
nonparametric or quadratic �ts are harder to interpret in this case, but in this
empirical modelling there could be other confounding factors not accounted for by
the variables. The idea is that we should let the data tell their story rather than
impose our prejudice; with this attitude a nonparametric smoothing technique is
an invaluable tool for exploratory data analysis. 2

Ad hoc methods

Our general problem is as follows: given bivariate data (x1; y1); : : : ; (xN ; yN )

we assume that conditional on xi the outcome yi is normal with mean
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Figure 18.1: Relationship between SO2 level and industrial activity in 41

US cities. Shown are the nonparametric smooth (solid) and the linear re-

gression (dased) estimates.

E(yi) = f(xi)

and variance �2. We want to estimate the function f(x) from the data.

The key idea of nonparametric smoothing is local averaging: f(x) at a

�xed value of x is the mean of yi at x, so if there are many yi's observed at

x, then the estimate of f(x) is the average of those yi's. More often than

not we have to compromise: the estimate of f(x) is the average of yi's for

xi's `near' x. This can be implemented by partitioning the data, �nding

the nearest neighbours or kernel smoothing.

Partitioning

We can partition the range of the predictor x into n small intervals or

bins, so that within an interval f(xi) is approximately constant, and yi's

are approximately iid with mean f(xi). We can then estimate f(xi) by

the sample average of yi's in the corresponding interval. The estimated

function can be drawn as the polygon connecting the sample means from

each interval.

As an example, Table 18.1 partitions the SO2 data into 20 equispaced

intervals (in log x). Note that some intervals are empty, but that does not

a�ect the method. Figure 18.2 shows the nonparametric smoothing of the

SO2 level against the industry using di�erent numbers of bins. The amount

of smoothing is determined by the interval size, which has the following

trade-o�: if the interval is too large then the estimate might smooth out

important patterns in f(x), and the estimate is biased; but if it is too

small the noise variance exaggerates the local variation and obscures the

real patterns. The purpose of smoothing is to achieve a balance between
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No. x Bin Mid-x y No. x Bin Mid-x y

1 35 1 39 31 22 361 11 383 28
2 44 2 49 46 23 368 11 383 24
3 46 2 49 11 24 379 11 383 29
4 80 4 78 36 25 381 11 383 14
5 91 5 98 13 26 391 11 383 11
6 96 5 98 31 27 412 11 383 56
7 104 5 98 17 28 434 12 482 29
8 125 6 123 8 29 453 12 482 12
9 136 6 123 14 30 454 12 482 17
10 137 6 123 28 31 462 12 482 23
11 181 8 193 14 32 569 13 605 16
12 197 8 193 26 33 625 13 605 47
13 204 8 193 9 34 641 13 605 9
14 207 8 193 10 35 699 14 760 29
15 213 8 193 10 36 721 14 760 10
16 266 9 243 26 37 775 14 760 56
17 275 10 305 18 38 1007 15 954 65
18 291 10 305 30 39 1064 15 954 35
19 337 10 305 10 40 1692 18 1891 69
20 343 11 383 94 41 3344 20 2984 110
21 347 11 383 61

Table 18.1: Partitioning the SO2 level (= y) data into 20 intervals/bins of

the predictor variable x = industrial activities. `Mid-x' is the midpoint (in

log scale) of the interval. Note: throughout this section SO2 is analysed in

log scale.

local bias and variance.

Nearest neighbours

The nearest-neighbour method simply prescribes, for any x,

bf(x) = 1

k

X
i2nk(x)

yi;

where nk(x) is the neighbourhood of x that includes only the k values of

xi's nearest to x. Hence bf(x) is a simple average of yi's for k nearest

neighbours of x; larger values of k e�ect more smoothing. For example,

using k = 7, at x = 125 we obtain the following nearest neighbours of x

with the corresponding y:

x 125 136 137 104 96 91 181

y 8 14 28 17 31 13 14

giving an average log y of 2.79. The set of nearest neighbours needs to be

computed at every value of x, making this method computationally more

demanding than the partition method. For the plots in the top row of

Figure 18.3 bf(x) is computed at the observed xi's, but this is not neces-

sary as it can be computed at a smaller subset of values. Note that the
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Number of bins =  4
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Number of bins =  10
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Number of bins =  41

Figure 18.2: Nonparametric smoothing of the SO2 level against the indus-

trial activity using simple partitioning of the predictor variable. The dashed

line in each plot is the linear regression line.

estimate at the boundaries is biased, especially as we increase the number

of neighbours.

Kernel method

Using the kernel method one computes a weighted average

bf(x) = Pn

i=1 k(xi � x)yiPn

i=1 k(xi � x)

where the kernel function k(x) is typically a symmetric density function. If

we use the normal density the method is called Gaussian smoothing. The

amount of smoothing is determined by the scale or width of the kernel; in

Gaussian smoothing it is controlled by the standard deviation. The bottom

row of Figure 18.3 shows the Gaussian smoothing of the SO2 data using a

standard deviation of 0.2 and 0.05 (note: x is also in log scale).

With the last two methods bf(x) can be computed at any x, while with

the �rst method the choice of a partition or interval size determines the

values of x for which bf(x) is available. This is a weakness of the �rst

method, since if we want f(x) for a lot of x values we have to make the

intervals small, which in turn makes the estimation error large. The general
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Number of neighbours =  3
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Standard deviation =  0.2
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Standard deviation =  0.05

Figure 18.3: Nonparametric smoothing of the SO2 level against the indus-

trial activity using the nearest-neighbour method (top row) and the kernel

method (bottom row). The kernel method uses the normal density with the

stated standard deviation.

method in the next section overcomes this weakness. For each method the

choice of the smoothing parameter is an important issue. The next section

shows that the problem is simply a variance component estimation problem.

18.2 Linear mixed models approach
We will now put the nonparametric function estimation within the linear

mixed model framework with likelihood-based methodology. Compared to

the nearest-neighbour or the kernel method, the likelihood-based method

is easier to extend to deal with

� non-Gaussian outcome data, such as Poisson or binomial data;

� di�erent types of functions, such as functions with jump discontinuities

or partly parametric models;

� the so-called `inverse problems' (e.g. O'Sullivan 1986): the observed

data y satis�es a linear model Ey = X�, where � is a smooth function

and X is ill-conditioned.

� higher-dimensional smoothing problems, including image analysis and

disease mapping. The mixed model approach deals with the boundary



478 18. Nonparametric smoothing

estimation automatically without any special handling. This feature is

essential when we are dealing with higher-dimensional smoothing with

irregular boundaries as in a geographical map, where the application

of the kernel method is not straightforward.

While it is possible to develop the theory where xi's are not assumed

to be equispaced (see Section 18.9), the presentation is simpler if we pre-

bin the data in terms of the x values prior to analysis. So assume the x

values form a regular grid; each xi can be associated with several y-data, or

perhaps none. This is exactly the same as partitioning the data as described

before. Rather than just presenting the simple averages, the partition will

be processed further. Pre-binning is commonly done in practice to reduce

data volume, especially as the y-data at each x value may be summarized

further into a few statistics such as the sample size, mean and variance. In

many applications, such as time series or image analysis, the data usually

come in a regular grid format.

The e�ect of binning is determined by the bin size: if it is too large

then we introduce bias and lose some resolution of the original data, and

in the limit as the bin size goes to zero we resolve the original data. In

practice we make the bins small enough to preserve the original data (i.e.

minimize bias and make local variation dominate), but large enough to be

practical since there is a computational price for setting too many bins.

We will not develop any theory to say how small is `small enough', since

in practice it is easy to recognize a large local variation, and if we are in

doubt we can simply set it smaller. As a guideline, the degrees of freedom

of the estimate (described in Section 18.5) should be much smaller than

the number of bins.

So, after pre-binning, our problem is as follows. Given the observations

(xi; yij) for i = 1; : : : ; n and j = 1; : : : ; ni, where xi's are equispaced, we

assume that yij 's are normal with mean

E(yij) = f(xi) = fi

and variance �2. We want to estimate f = (f1; : : : ; fn). Note that some

ni's may be zero. Smoothness or other properties of f(x) will be imposed

via some stochastic structure on fi; this is discussed in the next section.

To put this in the linear mixed model framework, �rst stack the data

yij 's into a column vector y. Conditional on b, the outcome y is normal

with mean

E(yjb) = X� + Zb

and variance � = �
2
IN , where N =

P
i ni. The mixed model framework

covers the inverse problems (O'Sullivan 1986) by de�ning Z properly. For

our current problem we have

fi = � + bi;

and, for identi�ability, assume that E(bi) = 0. Here X is simply a column

of ones of length N , and Z is an N � n design matrix of zeros and ones;
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the row of Z associated with original data (xi; yij) has value one at the

i'th location and zero otherwise. The random e�ects b is simply the mean-

corrected version of f . The actual estimate bb depends on the smoothness

assumption of the function f(x).

It is instructive to see what we get if we simply assume that b is a �xed

e�ect parameter. The data structure is that of a one-way model

yij = � + bi + eij ;

where, for identi�ability, we typically assume
P

i nibi = 0. In this setup

the regularity of the grid points x1; : : : ; xn is not needed; in fact, we have

to drop the xi values where ni = 0, since for those values f(x) is not

estimable. For simplicity, we just relabel the points for which ni > 0 to

x1; : : : ; xn, so we can use the same notation as before. The estimate of bi
is bbi = yi � y

where y =
P

i yij=N is the grand mean and yi is simply the average of the

data of the i'th bin, and the estimate of fi (regardless of the constraint) is

bfi = yi: (18.1)

The variance of this estimate is �2=ni. If ni is small, which is likely if the

bin size is small, the statistical noise in this simple formula would be large,

obscuring the underlying patterns in the function f(x). The purpose of

smoothing is to reduce such noise and to reveal the patterns of f(x).

18.3 Imposing smoothness using random e�ects
model

The assumption about the random e�ects b depends on the nature of the

function. If f(x) is smooth, then the smoothness can be expressed by

assuming that the di�erences

�bj = bj � bj�1 (18.2)

or the second di�erences

�2
bj = bj � 2bj�1 + bj�2 (18.3)

are iid normal with mean zero and variance �2b . In general we can de-

�ne di�erencing of order d as �d
bj , and smoothness can be imposed by

assuming that it is iid with some distribution.

For example, assuming d = 1, we have

bj = bj�1 + ej ;

where ej 's are an iid sequence; this means b is a �rst-order random walk

on the grid. Figure 18.4 shows some simulated normal random walks of
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Figure 18.4: Top row: simulated random walks of the form bj = bj�1 + ej,

for j = 1; : : : ; 128, where b1 � 0 and ej 's are iid N(0; 1). Bottom row:

bj = 2bj�1 � bj�2 + ej , for j = 1; : : : ; 128, where b1 = b2 � 0 and ej's are

the same as before.

order 1 and 2; it is clear that the trajectory of random walks of order 2

can mimic a smooth function. The �rst di�erencing might be used to allow

higher local variation in the function.

Rede�ning the notation � for the whole vector

�b �

0
BBB@

b2 � b1

b3 � b2

...

bn � bn�1

1
CCCA

and assuming that �b is normal with mean zero and variance �2b In�1, we

have the prior log-likelihood of b given by

log p(b) = �
n� 1

2
log�2b �

1

2�2b
b
0�0�b

= �
n� 1

2
log�2b �

1

2�2b
b
0
R
�1
b (18.4)

where
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R
�1

� �0� =

0
BBBBB@

1 �1 0

�1 2 �1
. . .

. . .
. . .

�1 2 �1

0 �1 1

1
CCCCCA :

Or, equivalently, we have assumed that b is normal with mean zero and

inverse covariance matrix

D
�1

� �
�2
b R

�1
:

Note that log p(b) is a conditional log-likelihood given b1; it is a con-

venient choice here, since b1 does not have a stationary distribution. We

may also view b as having a singular normal distribution, with D not of full

rank; this is a consequence of specifying the distribution for only the set of

di�erences. In contrast to the animal breeding application in Section 17.3,

specifying R�1 here is more natural than specifying R (which is de�ned as

the generalized inverse of R�1; in practice we never need to compute it). In

both applications R has a similar meaning as a scaled covariance matrix.

Using the second-order assumption that

�2
b �

0
BBB@

b3 � 2b2 + b1

b4 � 2b3 + b2

...

bn � 2bn�1 + bn�2

1
CCCA

is normal with mean zero and variance �2b In�2, the prior log-likelihood is

the same as (18.4) with (n� 2) in the �rst term rather than (n� 1), and

R
�1

� (�2)0�2 =

0
BBBBBBBBB@

1 �2 1 0

�2 5 �4 1

1 �4 6 �4 1
. . .

. . .
. . .

. . .
. . .

1 �4 6 �4 1

1 �4 5 �2

0 1 �2 1

1
CCCCCCCCCA
:

18.4 Penalized likelihood approach
Combining the likelihood based on the observation vector y and the random

e�ects b, and dropping terms not involving the mean parameters � and b,

we obtain

logL = �
1

2�2

X
ij

(yij � � � bi)
2
�

1

2�2b
b
0
R
�1
b:

The nonnegative quadratic form b
0
R
�1
b is large if b is rough, so it is common

to call the term a roughness penalty and the joint likelihood a `penalized
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likelihood' (e.g. Green and Silverman 1993). In the normal case, given �2

and �2b , the estimates of � and b are the minimizers of a penalized sum of

squares X
ij

(yij � � � bi)
2 + �b

0
R
�1
b;

where � = �
2
=�

2
b .

There is a slight di�erence in the modelling philosophy between the

roughness penalty and mixed model approaches. In the former the penalty

term is usually chosen for computational convenience, and it is not open

to model criticism. The mixed model approach treats the random e�ects b

as parameters that require some model, and �nding an appropriate model

is part of the overall modelling of the data. It is understood that a model

assumption may or may not be appropriate, and it should be checked with

the data. There are two model assumptions associated with the penalty

term:

� The order of di�erencing. The penalty approach usually assumes

second-order di�erencing. Deciding what order of di�erencing to use

in a particular situation is a similar problem to specifying the order

of nonstationarity of an ARIMA model in time series analysis. It can

be easily seen that under- or over-di�erencing can create a problem

of error misspeci�cation. For example, suppose the true model is a

�rst-order random walk

�bj = ej ;

where ej 's are an iid sequence. The second-order di�erence is

�2
bj = �ej � aj ;

so aj 's are no longer an iid sequence, but a moving average (MA) of

order one. This is a problem since, usually, the standard smoothing

model would assume aj 's to be iid.

� Normality. A quadratic penalty term is equivalent to assuming nor-

mality. This is appropriate if f(x) varies smoothly, but not if f(x)

has jump discontinuities as it would not allow a large change in f(x),

and it would force the estimate to be smooth. This is where the linear

model setup is convenient, since it can be extended easily to deal with

this case by using nonnormal mixed models.

18.5 Estimate of f given �2 and �2
b

The joint log-likelihood based on the observation vector y and the random

e�ects b is

logL = �
1

2
log j�j �

1

2
(y �X� � Zb)0��1(y �X� � Zb)

�
n� d

2
log�2b �

1

2�2b
b
0
R
�1
b
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where d is the degree of di�erencing. Using the assumption � = �
2
IN ,

given �2 and �2b , the estimates of � and b according to the general formula

(17.12) are the solution of

�
X
0
X X

0
Z

Z
0
X Z

0
Z + �R

�1

��
�

b

�
=

�
X
0
y

Z
0
y

�
; (18.5)

where � = �
2
=�

2
b . We can show that the combined matrix on the left-

hand side is singular (Exercise 18.1); it is a consequence of specifying a

model only on the set of di�erences of b. This implies we can set the level

parameter � at an arbitrary value, but by analogy with the �xed e�ects

model it is meaningful to set

b� = y =
X
ij

yij=N:

The estimate of b is the solution of

fZ
0
Z + �R

�1
gb = Z

0(y �X b�): (18.6)

From the de�nition of Z in this problem, we can simplify (18.6) to

(W + �R
�1)b =W (yv � y) (18.7)

where W = Z
0
Z = diag[ni] is a diagonal matrix with ni as the diagonal

element, and

y
v
�

0
B@

y1
...

yn

1
CA

is the `raw' mean vector. If ni = 0 the weight on yi (which is not available)

is zero, so it does not contribute in the computation; we can simply set yi
to zero. (The expression `y� y' means that the scalar y is subtracted from

every element of the vector y; this is a common syntax in array-processing

computer languages.)

We can also write

bf = y + (W + �R
�1)�1

W (yv � y)

= (W + �R
�1)�1

Wy
v + (W + �R

�1)�1
f(W + �R

�1)1ny �W1nyg

= (W + �R
�1)�1

Wy
v + (W + �R

�1)�1
�R

�11ny

= (W + �R
�1)�1

Wy
v

since R�11n = 0, where 1n is a vector of ones of length n.
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For the purpose of interpretation, we de�ne a smoother matrix S� as

S� = (W + �R
�1)�1

W (18.8)

so that bf = S�y
v
:

We can see that

S�1n = (W + �R
�1)�1

W1n

= 1n � (W + �R
�1)�1

�R
�11n

= 1n;

meaning each row of the matrix adds up to one. So we can interpret eachbfi as a weighted average of the raw means yi's, where the weights are

determined by sample size ni, the smoothing parameter � and the choice

of R�1. If the smoothing parameter � = 0 then there is no smoothing, and

we are back to the previous estimate (18.1) based on assuming that b is

�xed.

If the data are naturally in a regular grid format such that ni � 1 for

all i, or we have pairs (xi; yi), for i = 1; : : : ; n, then W = In and we get

bb = (In + �R
�1)�1(y � y);

where y =
P

i yi=n, and

bf = y + (In + �R
�1)�1(y � y)

= (In + �R
�1)�1

y:

A particular bfi is a weighted average of yi's of the form

bfi =X
j

kijyj

where
P

j kij = 1 for all i. Figure 18.5 shows the shape of the weights kij 's

for i = 1, 10 and 20, and for d = 1 and 2.

A more `physical' interpretation of the amount of smoothing can be

given in terms of the model degrees of freedom or the number of parameters

associated with the function estimate. This number of parameters is also

useful to make a like-with-like comparison between di�erent smoothers. By

analogy with the parametric regression model the degrees of freedom are

de�ned as

df = trace S�: (18.9)

This is a measure of model complexity: as � gets larger the estimate be-

comes more smooth, the degrees of freedom drop, and the estimate gets

closer to a parametric estimate. If � ! 0 we get the number of nonempty

bins as the degrees of freedom.
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Figure 18.5: The shape of the weights kij 's as a function of index j, for

i = 1 (left edge, solid line), 10 (middle location, dashed line) and 20 (right

edge, dotted line). The smoothing parameter � is chosen so both smoothers

for d = 1 and d = 2 have around 6 degrees of freedom.

In principle we can compute bb by simply solving the linear equation

(18.7), but in practice n may be large, so a simple-minded inversion of

the matrix is not e�cient. In all large-scale inversion problems we have to

exploit the particular structure of the matrix:

� Note that R�1 is a band matrix (with one or two nonzero values on

each side of the diagonal). Since W is a diagonal matrix, the matrix

(W+�R�1) is also a band matrix. Finding a very fast solution for such

a matrix is a well-solved problem in numerical analysis; see Dongarra

et al. (1979, Chapter 2) for standard computer programs available

in Linpack (a collection of programs for linear/matrix computations,

such as �nding solutions of linear equations).

� The Gauss{Seidel algorithm (Press et al. 1992, page 855) works well

for this problem.

� If the weights ni's are equal, so thatW is a constant times the identity

matrix, then we can use the Fourier transform method (Press et al.

1992, Chapters 12 and 13).

(The details of these algorithms are beyond the scope of this text, but seri-

ous students of statistics should at some point learn all of these methods.)

Example 18.2: We now apply the methodology to the SO2 data given in
Table 18.1 where n = 20 and N = 41. The bin statistics are given in Table 18.2,
where `NA' means `not available'. Figure 18.6 shows the nonparametric smooth
of yv using smoothing parameters � = 5 and � = 0:5. 2

18.6 Estimating the smoothing parameter
Estimating the smoothing parameter � = �

2
=�

2
b is equivalent to estimating

the variance components. We have described before the general problem
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Bin i 1 2 3 4 5 6 7 8 9 10
ni 1 2 0 1 3 3 0 5 1 3
y
i

3.43 3.11 NA 3.58 2.94 2.68 NA 2.54 3.26 2.86

Bin i 11 12 13 14 15 16 17 18 19 20
ni 8 4 3 3 2 0 0 1 0 1
y
i

3.45 2.96 2.94 3.23 3.86 NA NA 4.23 NA 4.7

Table 18.2: Bin statistics for the SO2 data
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Figure 18.6: Nonparametric smoothing of the SO2 level against the indus-

trial activity using the mixed model approach. The top row is based on the

�rst-di�erence assumption and the bottom row on the second-di�erence.

The dashed line on each plot is the linear �t.

of estimating the variance components � = (�2; �2b ) using the pro�le log-

likelihood

logL(�) = �
1

2
log jV j �

1

2
(y �X b�)V �1(y �X b�)

where b� is computed according to (17.7), and � enters the function through

V = �
2
IN + �

2
bZRZ

0
;
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or using the equivalent form described in Section 17.5. In this case we want

to maximize

Q = �
N

2
log�2 �

1

2�2
(y �X� � Zb)0(y �X� � Zb)

�
n� d

2
log�2b �

1

2�2b
b
0
R
�1
b

�
1

2
log j��2

W + �
�2
b R

�1
j:

with respect to all the parameters.

To apply the iterative algorithm in Section 17.5: start with an estimate

of �2 and �
2
b (note that �2 is the error variance, so we can get a good

starting value for it), then:

1. Compute b� = y, and bb according to (18.7), and the error e = y� b��Zbb.
2. Compute the degrees of freedom of the model

df = tracef(W + �R
�1)�1

Wg;

and update � using

�
2 =

e
0
e

N � df

�
2
b =

1

n� d
[b0R�1

b+ �
2 tracef(W + �R

�1)�1
R
�1
g];

where all unknown parameters on the right-hand side are evaluated at

the last available values during the iteration, and update � = �
2
=�

2
b .

Recall that d is the degree of di�erencing used for the random e�ects.

3. Iterate 1 and 2 until convergence.

Example 18.3: To apply the algorithm to the SO2 data we start with �
2 =

0:35 (e.g. use a coarse partition on the data and obtain the error variance) and
� = 5 (or �2b = 0:35=5). For order of di�erencing d = 1 the algorithm converges
to

b�2 = 0:3679b�2b = 0:0595

with the corresponding smoothing parameter b� = 6:2 and model degrees of free-

dom df = 5:35. The resulting estimate bf is plotted in Figure 18.7. Also shown is
the quadratic �t of the data, which has 3 degrees of freedom for the model.

For d = 2, using the same starting values as above, the algorithm converges
to

b�2 = 0:3775b�2b = 0:0038

with the corresponding smoothing parameter b� = 99:2 and model degrees of
freedom df = 3:56, very close to the quadratic �t. The estimate using d = 2 is
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Figure 18.7: Nonparametric smoothing of the SO2 level against the indus-

trial activity using the estimated smoothing parameter, with corresponding

degrees of freedom df = 5:35 for d = 1, and df = 3:56 for d = 2. The dashed

lines are linear and quadratic �ts of the data.

more `pleasing', while using d = 1 the estimate appears to show some spurious
local patterns. A formal comparison between the �ts can be done using the AIC;
for the current problem

AIC = N log b�2 + 2 df:

We obtain AIC=�30:3 for d = 1, and a preferable AIC=�32:8 for d = 2. 2

Generalized cross-validation

The generalized cross-validation (GCV) score was introduced by Craven

and Wahba (1979) for estimation of the smoothing parameter � in non-

parametric regression. In our setting the score is of the form

GCV(�) =
e
0
e

(N � df)2
;

where the error e = y � b� � Zbb and degrees of freedom df are computed

at �xed �. The estimate b� is chosen as the minimizer of the GCV. The

justi�cation of the GCV (Wahba 1990, Chapter 4) is beyond the scope of

our text.

In some sense GCV(�) is a pro�le objective function for �, which makes

the estimation of � a simple one-dimensional problem. Given b� we can

estimate the error variance as

b�2 = e
0
e

(N � df)
(18.10)

where e and df are computed at b�.
Figure 18.8 shows the GCV as a function of � for the SO2 data. The

minimum is achieved at b� � 135, with a corresponding degrees of freedom

df = 3:35, very close to the MLE given earlier.
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Figure 18.9: The prediction band for the nonparametric function f(x) based

on pointwise 95% prediction intervals.

is a measure of treatment e�ect, and f(ui) measures a nonlinear e�ect of

the covariate ui.

Assuming that ui's are equispaced and following the previous develop-

ment, we can write the partial linear model in the form

E(yjb) = X� + Zb;

where X is an N � p design matrix, � is a �xed e�ects parameter, and b is

a random e�ects parameter satisfying a smoothness condition. The model

is a linear mixed model, and the estimates of � and b are the solution of

(X 0
V
�1
X)� = X

0
V
�1
y

(Z 0��1
Z +D

�1)b = Z
0��1

y;

where V = �+ ZDZ
0. An iterative back�tting procedure may be used to

avoid the computation of V �1.

18.9 Smoothing nonequispaced data?

Occasionally we face an application where xi's are not equispaced, and we

are unwilling to prebin the data into equispaced intervals. The previous

methodology still applies with little modi�cation, but with more computa-

tions. The problem has a close connection with the general interpolation

method in numerical analysis.

It is convenient to introduce the `design points' d1; : : : ; dp, which do not

have to coincide with the data points x1; : : : ; xn. These design points can be

chosen for computational convenience, as with regular grids, or for better

approximation, as with the so-called Chebyshev points for the Lagrange

polynomial in Example 18.5. We will consider a class of functions de�ned

by

f(x) =

pX
j=1

bjKj(x);
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where Kj(x) is a known function of x and the design points, and bj 's are

the parameter values determined by f(x) at the design points. So, in e�ect,

f(x) is a linear model with Kj(x)'s as the predictor variables. In function

estimation theory Kj(x) is called the basis function. The nonparametric

nature of f(x) is achieved by allowing p to be large or, equivalently, by

employing a rich set of basis functions.

Example 18.4: The simplest example is the power polynomial

f(x) =

pX
j=1

bjx
j�1

;

where we have used the basis function

Ki(x) = x
j�1

:

Finding bj 's is exactly the problem of estimating the regression coe�cients in
a polynomial regression model; the design points do not play any role in this
case. Extending the power polynomial to a high degree is inadvisable because of
numerical problems. 2

Example 18.5: Using the Lagrange polynomial

f(x) =

pX
j=1

f(dj)
Y
k 6=j

x� dk

dj � dk

=

pX
j=1

bjKj(x)

where bj � f(dj) and

Kj(x) �
Y
k 6=j

x� dk

dj � dk
:

EachKj(x) is a polynomial of degree (p�1). The main advantage of the Lagrange
polynomial is that the coe�cients are trivially available. However, the choice of
the design points can make a great di�erence; in particular, the uniform design
is inferior to the Chebyshev design:

di =
a+ b

2
+
a� b

2
cos

(2i� 1)�

2p

for p points between a and b. 2

Example 18.6: The B-spline basis (deBoor 1978) is widely used because of
its local properties: f(x) is determined only by values at neighbouring design
points; in contrast, the polynomial schemes are global. The j'th B-spline ba-
sis function of degree m is a piecewise polynomial of degree m in the interval
(dj ; dj+m+1), and zero otherwise. The B-spline of 0 degree is simply the step
function with jumps at points (di; f(di)). The B-spline of degree 1 is the poly-
gon that connects (di; f(di)); higher-order splines are determined by assuming a
smoothness/continuity condition on the derivatives. In practice it is common to
use the cubic B-spline to approximate smooth functions (deBoor 1978; O'Sullivan
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1987); this third-order spline has a continuous second derivative. The interpolat-
ing B-spline is

f(x) =

p�k�1X
j=1

bjKj(x)

where Kj(x)'s are computed based on the design points or `knots' d1; : : : ; dp. See
deBoor (1978) for the cubic B-spline formulae. 2

Methodology

Given observed data (x1; y1); : : : ; (xn; yn), where Eyi = f(xi), we can write

a familiar regression model

y =

pX
j=1

bjKj(x) + e

� Zb+ e

where the elements of Z are

zij = Kj(xi)

for some choice of basis function Kj(x).

Since f(x) is available as a continuous function consider a smoothness

penalty of the form

�

Z
jf

(d)(x)j2dx;

where f (d)(x) is the d'th derivative of f(x). This is a continuous version

of the penalty we use in Section 18.3. In view of f(x) =
Pp

j=1 bjKj(x) the

penalty can be simpli�ed to a familiar form

�b
0
Pb;

where the (i; j) element of matrix P isZ
K

(d)
i (x)K

(d)
j (x)dx:

Hence the previous formulae apply, for example

bb = (Z 0
Z + �P )�1

Z
0
y:

18.10 Non-Gaussian smoothing
Using the GLMM theory in Section 17.8 we can extend nonparametric

smoothing to non-Gaussian data.

Example 18.7: Suppose we want to describe surgical mortality rate pi as a
function of patient's age xi. If we do not believe a linear model, or we are at
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an exploratory stage in the data analysis, we may consider a model where the
outcome yi is Bernoulli with probability pi and

logit pi = f(xi);

for some function f . In this example there could be a temptation to �t a linear
model, since it allows us to state something simple about the relationship between
patient's age and surgical mortality. There are, however, many applications where
such a statement may not be needed. For example, suppose we want to estimate
the annual rainfall pattern in a region, and daily rainfall data are available for a
5-year period. Let yi be the number of rainy days for the i'th day of the year;
we can assume that yi is binomial(5; pi), and

logit pi = f(i);

where f is some smooth function. Rather than for analysing a relationship, the
purpose of estimating f(x) in this application is more for a description or a
summary. 2

As before, assume that we can arrange or pre-bin the data into regular

grids, so our problem is as follows. Given the observations (xi; yij) for i =

1; : : : ; n and j = 1; : : : ; ni, where xi's are equispaced, yij 's are independent

outcomes from the exponential family model (Section 6.5) of the form

log p(yij) =
yij�i �A(�i)

�
+ c(yi; �):

Let �i � Eyij , and assume that for a known link function h(�) we have

h(�i) = f(xi) � fi;

for some unknown smooth function f .

To put this in the GLMM framework �rst vectorize the data yij 's into

an N -vector y. Conditional on b, the outcome y has mean � and

h(�) = X� + Zb; (18.11)

and b satis�es some smoothness condition stated in Section 18.3. For the

simple setup above

h(�) = f = � + b;

so X is a column of ones of length N , and Z is an N � n design matrix

of zeros and ones; the row of Z associated with original data (xi; yij) has

value one at the i'th location and zero otherwise.

We will treat the general model (18.11) so that the inverse problems are

covered, and all of our previous theories for smoothing and GLMM apply.

The joint likelihood of �, � and b is

logL(�; �; b) = log p(yjb) + log p(b)

where p(yjb) is in the exponential family given above, and p(b) is the density

of b. The parameter � includes any other parameter in the model, usually

the variance or dispersion parameters.
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Estimating f given �

We proceed as in Section 17.10, and some results are repeated here for

completeness. Given a �xed value of � we use a quadratic approximation

of the likelihood to derive the IWLS algorithm; see Section 6.7. Starting

with initial values for �0 and b0, the exponential family log-likelihood can

be approximated by

�
1

2
log j�j �

1

2
(Y �X� � Zb)0��1(Y �X� � Zb); (18.12)

where Y is a working vector with elements

Yi = x
0

i�
0 + z

0

ib
0 +

@h

@�i
(yi � �

0
i );

and � is a diagonal matrix of the variance of the working vector with

diagonal elements

�ii =

�
@h

@�i

�2

�vi(�
0
i );

where �vi(�
0
i ) is the conditional variance of yi given b. The derivative

@h=@�i is evaluated at the current values of � and b. Alternatively we

might use the term `weight' wi = ��1
ii , and weight matrix W = ��1.

If the random e�ects parameter b is assumed normal with mean zero

and variance �2bR, where R is as described in Section 18.3, we have the

familiar mixed model equation�
X
0��1

X X
0��1

Z

Z
0��1

X Z
0��1

Z + �
�2
b
R
�1

��
�

b

�
=

�
X
0��1

Y

Z
0��1

Y

�
(18.13)

to update � and b. Or, using the iterative back�tting algorithm, we can

solve

(Z 0��1
Z + �

�2
b R

�1)b = Z
0��1(Y � Z�)

to update b, and similarly for �. By analogy with the standard regression

model the quantity

df = tracef(Z 0��1
Z + �

�2
b R

�1)�1
Z
0��1

Zg

is called the degrees of freedom associated with b. The use of nonnormal

random e�ects is described in Section 18.12.

Example 18.8: We will now analyse the surgical mortality data in Table
6.2, grouped into 20 bins given in Table 18.3. Let yi =

P
j
yij be the number

of deaths in the i'th bin, and assume that yi is binomial(ni; pi) with dispersion
parameter � = 1. We want to estimate f such that

logit pi = fi = � + bi:

To use the above methodology, start with �0 and b0 = 0 and compute the working
vector Y with element
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Bin i 1 2 3 4 5 6 7 8 9 10
Mid-xi 50.5 51.6 52.6 53.7 54.7 55.8 56.8 57.9 58.9 60.0
ni 3 0 1 3 2 2 4 1 1 2P

j
yij 0 NA 0 0 0 0 2 0 0 1

Bin i 11 12 13 14 15 16 17 18 19 20
Mid-xi 61.0 62.1 63.1 64.2 65.2 66.3 67.3 68.4 69.4 70.5
ni 4 4 3 2 1 0 2 2 1 2P

j
yij 2 3 1 1 0 NA 2 1 0 1

Table 18.3: Bin statistics for the surgical mortality data in Table 6.2. `NA'

means `not available'.

Yi = �
0
+ b

0
i +

yi � nip
0
i

nip
0
i
(1� p0

i
)

and weight wi = ��1

ii
= nip

0
i (1� p

0
i ). The matrix X is a column of ones and Z

is an identity matrix I20. We then compute the following updates:

� =

P
i
wi(Y � b)P

i
wi

b = (W + �
�2

b
R
�1
)
�1
W (Y � �);

where W = diag[wi]. The iteration continues after recomputing Y and �. So the
computation in non-Gaussian smoothing involves an iteration of the Gaussian
formula. The model degrees of freedom associated with a choice of �2b are

df = tracef(W + �
�2

b
R
�1
)
�1
Wg:

Figure 18.10 shows the nonparametric smooth of pi using smoothing param-
eter �2b = 0:2 and 2, with the corresponding 4.3 and 6.7 degrees of freedom. The
matrix R used is associated with d = 2; see Section 18.3. For comparison the
linear logistic regression �t is also shown. The result indicates some nonlinearity
in the relationship between age and mortality, where the e�ect of age appears to
atten after age 62. 2

Estimating the smoothing parameter

The discussion and method in Section 17.10 for estimating the variance

components in GLMM apply here. In general we can choose � to maximize

logL(�) = logL(b�; �;bb)� 1

2
log jZ 0��1

Z +D
�1
j; (18.14)

where � enters through � and D
�1. This approximate pro�le likelihood

can be maximized using any derivative-free optimization routine.

In the important special case of non-Gaussian outcomes involving a

single function estimation, we typically assume � = 1, so � = �
2
b . Since

with smooth functions we do not expect �2b to be too large, we can use the

following algorithm. Start with an initial estimate of �2b , then:
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Figure 18.10: Nonparametric smooth (solid) of mortality as a function of

age compared with the linear logistic �t (dotted). The circles are the data

points.

1. Compute b� and bb given �2b according to the method in the previous

section.

2. Fixing � and b at the values b� and bb, update �2b using

�
2
b =

1

n� d
[b0R�1

b+ tracef(Z 0��1
Z + �

�2
b R

�1)�1
R
�1
g]; (18.15)

where n is the length of b and d is the degree of di�erencing used to

de�ne R (so n� d is the rank of R).

3. Iterate between 1 and 2 until convergence.

This procedure applies immediately to the mortality data example.

Figure 18.11(a) shows the mortality rate as a function of age using the

estimated b�2b = 0:017, with corresponding df = 2:9.

Prediction intervals

From Section 18.7, assuming the �xed parameters are known at the esti-

mated values, the Fisher information for b is

I(bb) = (Z 0��1
Z + �

�2
b R

�1):

We can obtain approximate prediction intervals for pi as follows. First

obtain the prediction interval for fi in the logit scale

bfi � 1:96 se(bbi);
where se(bbi) is computed from I(bb) above, then transform the end-points

of the intervals to the original probability scale. A prediction band is

obtained by joining the endpoints of the intervals. Figure 18.11(b) shows

the prediction band for the mortality rate using the estimated b�2b = 0:017.
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(b) Prediction band

Figure 18.11: (a) Nonparametric smooth (solid) of mortality rate using the

estimated b�2b = 0:017, compared with the linear logistic �t (dotted). (b)

Prediction band for the nonparametric smooth.

18.11 Nonparametric density estimation
The simplest probability density estimate is the histogram, a nonparamet-

ric estimate based on simple partitioning of the data. When there is enough

data the histogram is useful to convey shapes of distributions. The weak-

ness of the histogram is that either it has too much local variability (if the

bins are too small), or it has low resolution (if the bins are too large).

The kernel density estimate is commonly used when a histogram is

considered too crude. Given data x1; : : : ; xN , and kernelK(�), the estimate

of the density f(�) at a particular point x is

f(x) =
1

N�

X
i

K

�
xi � x

�

�
:

K(�) is typically a standard density such as the normal density function; the

scale parameter �, proportional to the `bandwidth' of the kernel, controls

the amount of smoothing. There is a large literature on the optimal choice

of the bandwidth; see Jones et al. (1996) for a review.

Example 18.9: Table 12.1 shows the waiting time for N = 299 consecutive
eruptions of the Old Faithful geyser in the Yellowstone National Park. The den-
sity estimate in Figure 18.12, computed using the Gaussian kernel with � = 2:2,
shows distinct bimodality, a signi�cant feature that indicates nonlinear dynamics
in the process that generates it. The choice � = 2:2 is an optimal choice using
the unbiased cross-validation score from Scott and Terrell (1987). 2

There are several weaknesses of the kernel density estimate: (i) it is

very ine�cient computationally for large datasets, (ii) �nding the optimal

bandwidth (or � in the above formula) requires special techniques, and (iii)

there is an extra bias on the boundaries. These are overcome by the mixed

model approach.



498 18. Nonparametric smoothing

Waiting time (minutes)
D

en
si

ty
40 50 60 70 80 90 100

0.
00

0.
02

0.
04

Figure 18.12: The histogram and kernel density estimate (solid line) of the

geyser data indicate strong bimodality.

First we pre-bin the data, so we have equispaced midpoints x1; : : : ; xn
with corresponding counts y1; : : : ; yn; there is a total of N =

P
i yi data

points. The interval � between points is assumed small enough such that

the probability of an outcome in the i'th interval is fi�; for convenience we

set � � 1. The likelihood of f = (f1; : : : ; fn) is

logL(f) =
X
i

yi log fi;

where f satis�es fi � 0 and
P

i fi = 1. Using the Lagrange multiplier

technique we want an estimate f that maximizes

Q =
X
i

yi log fi +  (
X
i

fi � 1):

Taking the derivatives with respect to fi we obtain

@Q

@fi
= yi=fi +  :

Setting @Q

@fi
= 0, so

P
fi(@Q=@fi) = 0, we �nd  = �N , hence f is the

maximizer of

Q =
X
i

yi log fi �N(
X
i

fi � 1):

De�ning �i � Nfi, the expected number of points in the i'th interval,

the estimate of � = (�1; : : : ; �N ) is the maximizer ofX
i

yi log�i �
X
i

�i;

exactly the log-likelihood from Poisson data. We no longer have to worry

about the sum-to-one constraint. So, computationally, nonparametric den-

sity estimation is equivalent to nonparametric smoothing of Poisson data,

and the general method in the previous section applies immediately.
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To be speci�c, we estimate �i from, for example, the log-linear model

log�i = � + bi;

where bi's are normal with mean zero and variance �2bR; the matrix R is

described in Section 18.3. The density estimate bfi is b�i=N .

Computing the estimate

Given the smoothing parameter �2b , start with �
0 and b0, and compute the

working vector Y with element

Yi = �
0 + b

0
i +

yi � �
0
i

�0i

and weight wi = ��1
ii = �

0
i . Update these using

� =

P
i wi(Y � b)P

i wi

b = (W + �
�2
b R

�1)�1
W (Y � �);

where W = diag[wi]. In practice we can start with b = 0 and �0 = log y.

Estimation of �2b is the same as in the previous binomial example; the

iterative procedure and updating formula (18.15) for �2b also apply. As

before, it is more intuitive to express the amount of smoothing by the

model degrees of freedom associated with a choice of �2b :

df = tracef(W + �
�2
b R

�1)�1
Wg:

Example 18.10: For the geyser data, �rst partition the range of the data
(from 43 to 108) into 40 intervals. The count data yi's in these intervals are

1 1 2 12 17 5 16 3 11 8 6 8 2 7 2 3 5 11 6 17

18 17 24 12 14 18 5 21 9 2 11 1 2 1 0 0 0 0 0 1

Figure 18.13 shows the density estimate of the waiting time using the above
method (solid line) with d = 2 and an estimated smoothing parameter b�2

b
= 0:042

(corresponding df = 11:1). The density estimate matches closely the kernel
density estimate using the optimal choice � = 2:2. 2

Example 18.11: This is to illustrate the problem of the standard kernel
estimate at the boundary. The data are simulated absolute values of the standard
normal; the true density is twice the standard normal density on the positive side.
The complete dataset is too long to list, but it can be reproduced reasonably using
the following information. The values range from 0 to 3.17, and on partitioning
them into 40 equispaced intervals, we obtain the following count data yi:

17 14 15 20 17 15 16 17 19 14 7 9 14 7 10 11 5 8 5 10

10 4 6 7 4 2 5 3 1 1 2 0 1 0 0 1 1 0 0 1

Figure 18.14 shows the density estimates using the mixed model approach (solid
line, based on b�2b = 0:0006 or df = 4:3) and the kernel method (dotted line, with
optimal choice � = 0:06; and dashed line, with � = 0:175). Using smaller �
the kernel estimate has less bias at the boundary, but the estimate is visibly too
noisy, while larger � has the opposite problem. 2
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Figure 18.13: The density estimate of the geyser waiting time using the

mixed model approach (solid) and the kernel method (dotted). The smooth-

ing parameters of both methods are estimated from the data. The scattered

points are the counts yi's scaled so that as a step function they integrate to

one.
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Figure 18.14: The density estimates of a simulated dataset using the mixed

model approach (solid) and the kernel method with � = 0:06 (dotted) and

� = 0:175 (dashed). The scattered points are the scaled count data.

18.12 Nonnormal smoothness condition?

The normal smoothness assumption is convenient computationally, and it

is adequate in most applications. A nonnormal model may be required,

for example, if we suspect the underlying function is discontinuous so its

derivative might be heavy-tailed. Typically we still make an assumption

that the d'th-order di�erence

�d
bi = ai

is iid with some distribution with location zero and scale �b; these do not

have to be mean and standard deviation, so, for example, the assumption
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covers the Cauchy or double-exponential models.

Let `(a) be the log-likelihood contribution of a. Using starting value

b
0, as in Section 17.10, we can �rst approximate `(a) by

`(a) � `(ac)�
1

2
(a� a

c)0D�1(a� a
c);

where D�1 = diag[�`00(a0)], a0 = �d
b
0, and

a
c = a

0 +D`
0(a0):

Therefore,

`(a) � `(ac)�
1

2
(�d

b� a
c)0D�1(�d

b� a
c):

The derivative of `(a) with respect to b is

(��d)0D�1�d
b+ (�d)0D�1

a
c
:

Combining this with the quadratic approximation of log p(yjb), we ob-

tain the updating equation�
X

0��1
X X

0��1
Z

Z
0��1

X Z
0��1

Z + (�d)0D�1�d

��
�

b

�
=

�
X

0��1
Y

Z
0��1

Y + (�d)0D�1
a
c

�
:

In the normal case, ac = 0, and the term (�d)0D�1�d reduces to ��2
b R

�1.

18.13 Exercises

Exercise 18.1: Show that the combined matrix on the left-hand side of (18.5)
is singular.

Exercise 18.2: In Example 6.5 �nd the nonparametric smooth of the number
of claims as a function of age. Compare it with the parametric �t. Find the
con�dence band for the nonparametric �t.

Exercise 18.3: Earthquake wave signals exhibit a changing variance, indicating
the arrival of the di�erent phases of the wave.

-0.24 -0.19 -0.43 -1.30 -0.16 -1.15 1.42 -0.46 0.85 -0.62

0.12 0.17 -0.32 0.48 -1.38 0.08 -0.22 -1.50 -0.27 2.38

-1.72 -1.14 -0.47 -0.32 2.97 -1.76 -0.36 0.47 -0.89 -5.60

9.30 -3.20 5.42 -7.51 3.44 0.02 -0.29 -9.37 -54.77 4.27

-34.94 26.26 13.51 -87.68 1.85 -13.09 -26.86 -27.29 3.26 -13.75

17.86 -11.87 -11.63 4.55 4.43 -2.22 -56.21 -32.45 12.96 9.80

-6.35 1.17 -2.49 11.47 -7.25 -7.95 -8.03 7.64 25.63 9.12

10.24 -19.08 -3.37 -13.86 7.60 -15.44 5.12 2.90 0.41 -4.92

14.30 5.72 -10.87 1.86 -1.73 -2.53 -1.43 -2.93 -1.68 -0.87

9.32 3.75 3.16 -6.34 -0.92 7.10 2.35 0.24 2.32 -2.72

-2.95 -2.57 -1.63 2.06 -1.66 4.11 0.90 -2.21 2.71 -1.08

-1.22 -0.68 -2.78 -1.91 -2.68 -0.95 1.17 -0.72

Assume the signal is observed at regular time points i = 1; : : : ; N , and yi's are
independent normal with mean zero and variance �2i , where �

2
i changes smoothly

over time.
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(a) Develop a smoothing procedure, including the computational algorithm, to
estimate the variance as a function of time.

(b) Apply it to the observed data.

(c) Find the prediction band for the variance function.

Exercise 18.4: Find the nonparametric estimate of the intensity function from
the software failure data in Example 11.9, and compare it with the parametric
estimate. Discuss the advantages and disadvantages of each estimate.

Exercise 18.5: For the epilepsy data in Section 11.9 �nd the nonparametric
estimate of the baseline intensity function associated with the Cox model as
described in Section 11.10.

Exercise 18.6: The following time series (read by row) is computed from the
daily rainfall data in Valencia, southwest Ireland, from 1985 to 1994. There
are 365 values in the series, each representing a calendar date with the 29th of
February removed. Each value is the number of times during the ten year period
the rain exceeded the average daily amount (4 mm); for example, on January 1st
there were 5 times the rain exceeded 4 mm.

5 3 6 7 4 2 6 6 7 4 6 3 5 1 2 1 1 5 4 3 4 4 5 5 5 3 2 4 4

3 3 5 3 4 4 2 4 4 5 2 3 4 3 5 5 1 1 4 1 5 2 1 3 3 2 7 4 2

3 4 2 3 4 3 2 2 2 2 1 4 5 3 2 3 1 4 6 2 7 5 2 2 3 1 3 4 4

5 3 5 5 4 4 4 4 2 2 2 2 5 4 1 2 2 3 1 1 2 3 2 2 4 3 4 2 2

1 2 3 2 2 4 2 2 2 1 1 1 1 3 2 1 2 2 4 2 2 1 0 1 2 2 2 2 3

2 1 3 2 2 0 1 4 2 0 4 2 0 3 2 1 3 2 1 1 1 1 3 1 2 3 5 3 0

4 2 5 2 2 2 3 1 3 1 2 3 2 2 1 5 2 4 4 2 3 3 3 3 3 1 1 0 2

3 3 4 4 3 4 4 1 2 3 1 4 3 4 5 0 3 2 3 5 4 4 3 4 4 3 2 1 4

2 4 4 1 3 3 4 3 2 5 2 1 2 1 2 2 3 2 1 1 3 2 3 1 3 3 1 1 5

3 3 5 1 1 2 3 0 1 3 1 4 6 3 4 4 3 5 5 5 3 3 3 2 2 3 0 1 5

4 5 4 5 2 4 5 5 3 4 5 6 5 2 3 5 2 4 3 2 3 5 8 4 5 5 5 4 4

4 5 4 4 3 3 2 4 4 3 1 3 4 4 3 2 3 5 6 2 5 4 4 1 3 2 3 2 3

4 3 6 2 2 7 5 4 4 7 5 4 5 3 5 6 6

Assuming a binomial model for the observed data, compute the smoothed prob-
ability of exceeding the mean rainfall as a function of calendar time. Present also
the prediction band around the smoothed estimate.


