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Overview

• Proteomics & Cancer Proteomics

– Why?
– Why is it hard?

• Technology & Data

– How to measure proteins
– Issues: biological, technical, statistical

• TOF-MS

• Experiences with the analysis of microarray data and how they may
translate into working with proteomics data



2

The Central Dogma

• DNA: What the cell can do

• mRNA: What the cell tries to do

• Protein: What the cell does
. . . potentially

Source: http://nobelprize.org/medicine/educational/dna/
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Proteins

Functions Enzymes, hormones,
growth factors, transcription
factors, membrane receptors,
transporters, antibodies, . . .

Modifications Phosphorylation
of proteins can regulate their
biological activity

Splice variants Often expressed
sub-sequences of a gene
(exons) can be selectively
arranged to yield different
proteins

Structure
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The Proteome

• The collection of proteins found in a specific cell type in a particular
environment OR any useful sub- or superset thereof (human,
mitochondrial p.)

• Dynamic range from 1 copy/cell to 106 copies/cell

• The human genome of ca. 30000 genes codes for many more proteins:

– alternative splicing (2 to 5 fold increase)
– post-translational modifications (2 to 5 fold increase)
– alternative initiation, RNA editing, ribosomal frameshifting, protein

splicing, protein aging, . . .
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’Genes were easy ’ – Cancer Proteomics

Of general biological interest:

• Protein inventory of reference

• Cell signaling

• Characterization of active proteins

• Functional protein interactions

• . . .

Clinical perspectives:

• Biomarker discovery for

– early diagnostic
– treatment response

• Identification of drug targets



6

Technologies

• 2d gel electrophoresis

• SELDI/MALDI mass spectrometry

• Protein Chips

– the next big thing
– analogous to mRNA chips

• Pre-fractionation

– separate proteins by physical/chemical properties
– high-throughput possible
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2d Gel Electrophoresis

• Proteins in a sample are separated by isoelectric point and molecular
mass within a polyacrylamide gel & stained ⇒ protein expression map

• Technically known since the 70s, high-throughput in combination with

– scanning of expression maps,
– digital quantification of spot sizes,
– protein identification for interesting spots (through MS)

• Resolution of several 1000 proteins per map

• Active development [8, 6]:

– improved digital processing
– combinations with pre-fractionation, mass spectrometry
– two-color systems
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Issues with 2D Gels

• Biological:

– biased towards high-abundance proteins
– no suitable for high mass, high hydrophobia, low copy number

• Technical:

– poor linear response
– spot recognition is hard
– spot matching between gels is hard

• Practical: quantification requires expertise & time

• Statistical: little systematic treatment
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2D Gel Data

• Observations may be heavily censored and/or missing

• Often useful structure:

– percentage of unobserved depends on expression level of observed
– observations log nicely
– mean/variance relationship

• However, mostly ad-hoc methods, e.g.:

– Breast cancer samples with < 10% unobserved: impute by iteratively
regressing on principal components

– Colorectal cancer samples with 50% unobserved: use missingness to
seperate sporadic and familial cases
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Mass Spectrometry

• MALDI-TOF MS: Matrix-assisted laser desorption/ionisation-time of
flight mass spectrometry

– sample proteins are embedded in energy-absorbent matrix molecules
– laser stimulates the matrix to transfer energy to proteins
⇒ proteins get ionized

– an electric field hurls the ions down the flight tube
– a detector counts impacts in regular time intervals:
∗ count ≈ number of proteins
∗ time of flight ≈ mass/charge of proteins

• SELDI-TOF MS: surface-enhaced laser desorption/ionisation-time of
flight mass spectrometry

– uses specially treated protein chips that bind a specific class of
protein
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A data-analytic strategy for protein biomarker discovery 451
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Fig. 1. The outline of the Surface-Enhanced Laser Desorption/Ionization (SELDI) ProteinChip technology.

subsequent stages of the biomarker discovery/validation process. For this purpose, we retrieved serum
samples of 386 subjects, approximately equally distributed across four groups: late-stage prostate cancer
(N = 98), early-stage prostate cancer (N = 99), BPH (N = 93), and normal controls (N = 96), stored
in the serum repository of the EVMS Virginia Prostate Center. Late-stage prostate cancer patients had a
biopsy-proven cancer staged C or D, and Prostate Specific Antigen (PSA) concentrations greater than 4
ng/ml. Early-stage prostate cancer patients had a biopsy-proven cancer staged A or B, and PSA greater
than 4 ng/ml. BPH patients had PSA values between 4 ng/ml and 10 ng/ml, low PSA velocities, and at
least two negative biopsies. Normal controls were aged 50 or older, corresponding to the age range of
cancer and BPH patients, with a PSA level less than 4 ng/ml and normal digital rectal exam.

Each of the retrieved serum samples was assayed at the EVMS for protein expression by the
SELDI ProteinChip Array technology of Ciphergen Biosystems Inc. (Wright et al., 1999; Rubin and
Merchant, 2000; Adam et al., 2001; Srinivas et al., 2001). The SELDI technology is a time-of-flight mass
spectrometry, shown in Figure 1, with a special ProteinChip Array whose surface captures proteins using
chemically or biologically defined protein docking sites. Proteins are captured on the chip surface, purified
by washing the surface, and crystallized with small molecules called ‘matrix’ or ‘energy-absorbing
molecules’ (EAMs) whose function is to absorb laser energy and transfer it to proteins. Energized protein
molecules fly away from the surface into a time-of-flight tube where the time for the molecules to fly
through the tube is a function of the molecular weight and charge of the protein. A detector at the end of
the tube measures the ‘intensity’ of proteins at each discrete time of flight and outputs about 48 000 data
points of (time of flight, intensity) pairs. Each discrete time of flight corresponds uniquely to a ratio of
the molecular weight of a protein to the number of charges introduced by the ionization. SELDI output,
therefore, produces about 48 000 data points of (mass/charge, intensity) pairs. Our analyses used 11 175
data points per sample covering the mass/charge range of 1500–20 000. The lower limit of the range was
placed at 1500 because intensity measures of proteins below this limit are distorted by those of EAMs.
Twenty thousand was considered to be a reasonable upper limit of the range where the SELDI assays are
most sensitive. Note that PSA, a 28 741-Da glycoprotein that is currently used in the screening of prostate
cancer, is out of the mass/charge range of 1500–20 000 unless the molecules were doubly charged (an
uncommon event).

Source: [12]
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Workflow

Sample collection ⇒ Run samples (1/many chips)

⇓

Normalization/Calibration

⇓

Peak selection ⇐ Peak detection

⇓

Protein identification
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This is really about:

Statistical Challenges in Biomarker Discovery for
Cancer Using Time-of-Flight Mass Spectrometry
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Biomarkers

• Proteins that are somehow associated with incidence, treatment
response, or outcome of the disease

• Current biomarkers:

– e.g. PSA for prostate cancer
– usually based on disease mechanism and/or antibody screening
– weak (low sensitivity/specificity)

• In future hopefully:

– systematic exploration of possible markers
– reliable panels of markers
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Biomarkers for Early Cancer Detection

• This is HARD when aimed at population screening:

– detection before clinical onset
– very high specificity required
– fairly non-invasive method of sample collection

• Somewhat easier for screening high-risk groups

• Suitable biological material:

– urine (bladder c)
– nipple aspirate fluid (breast c)
– serum – hopefully general
⇒ Human Plasma Proteome Project (at HUPO)

• [4] suggest a five-step framework for systematic discovery
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Proteomics, Ovarian Cancer, and A New Paradigm?

Petricoin et al., 2002 [7]:

• Used a genetic algorithm (combined peak selection/detection) to
establish a predictive pattern of peaks for 50 cases and 50 controls

• Validation on 116 additional samples:

– 100% sensitivity
– 95% specificity

• ’. . . a new diagnostic paradigm’
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Not yet . . .

• Ad Petricoin et al.: [9, 1]

– greatest difference between cases and controls outside of
measurement range (< 500kD)

– sample processing causes blatant changes
– separating features not reproducible across experiments
– suspect mass calibration

• A general review of SELDI profiling papers finds [3]

– discrepancies between studies,
– failure to reproduce known biomarkers,
– re-discovery of old biomarkers discarded for lack of sensitivity and

specificity
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Workflow for Biomarkers/SELDI

(Hypothesis) ⇒ Experimental Design ⇒ Sample Collection

⇓

Peak Detection ⇐ Normalization ⇐ Quality Control I

⇓

Peak Selection ⇒ (Cross-) Validation ⇒ Protein Identification

⇓

Quality Control II
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Experimental Design

• Identification of potential confounders in sample collection and
processing

• Protein chip blocking structure

• Technical replication

• Pre-fractionation
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Normalization

• Remove techhnical variation unrelated to biological sample properties

• Something has to remain constant between samples

• Mostly ad-hoc:

– total ion current,
– area under curve,
– baseline
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Peak Detection

• aka feature selection, aka variable selection

• Mostly ad hoc:

– spectrum-by-spectrum,
– based on local extremes & smoothing

• Suggestion K. Coombes: smooth mean spectra via wavelet
decomposition & do peak detection there

• Project at MEB:

– split spectra into small windows (ca. 5 consecutive observations)
– compute a smoothed F-statistic with spectrum as grouping factor

for each window
– identify discriminatory peaks via false discovery rate
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Peak selection

• aka discrimination, aka biomarker (pattern) idenfication

• Often a univariate pre-selection step

• Conventional statistical methods have been employed:

– linear discrimination,
– quadratic disrimination,
– logistic regression with variable selection

• Numerous machine learning methods have been employed:

– classification trees,
– neural networks,
– support vector machines,
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– k nearest neighbors,
– bagging & boosting of all of the above

• Interestingly enough:

– conventional statistical tools usually do not do much worse than the
machine learning approaches,

– modern statistical tools adapted for microarray data have not been
used (reduced rank discrimination, empirical Bayes methods)



25

Cross-Validation

• Classification on the original data is biased towards the original data
*specifically* for high-dimensional data

• Validation: apply the prediction to a new data set, optimally.

– split into test & trainings set,
– fit the model to the trainings set,
– predict the test set for an unbiased error estimate

• Less wasteful: average error rates over repeated random partitions
(training/test) of the data (in extremis: leave-one-out)

• It still needs stressing [10]: any informative pre-selection of peaks must
also be cross-validated.
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• A useful baseline: crossvalidate for a randomly shuffled classification.

• All this comes much more natural to machine learning than to statistics
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Prediction & Quality Control II

• After establishment of a panel of biomarkers, status of new samples
will be predicted

• New samples need to be assessed whether they can be reasonably be
assumed to come from the original population

• [2] suggest:

– establish a reference sample and its properties
– spot the reference sample along with the new samples
– use principal components & Mahalanobis distance to identify

aberrant chips
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Microarrays and Proteomics



29

On our way to a full Omic Analysis?

(Genome, Proteome, Transcriptome, Metabolome . . . )

Depends:

• Only if we connect all available biological data can we hope to model &
understand biological activity on the molecular level in a comprehensive
way.
⇒ Doh

• All omics data is exchangeable & can be fed into the same black box.
⇒ I don’t think so . . .
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Some useful reading

• Useful review issues:

– Proteomics: Nature Insight Overview, Vol. 422, 2003
– Processing: Proteomics 3, 2003 (First Annual Proteomics Data

Mining Conference)

• The ovarian cancer study with follow-up: [7, 9, 1, 3]

• Applications & comparisons: [12, 11, 10]

• Machine learning for statisticians: [5]
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