

Alternative: extending FDR to
$$R = 0$$
NatureLook at the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
The distance of the 2-by-2 table of conditional probabilities for
origins:
Probability of research is a mixture:
 $P(R) = 1 = \pi = \pi_0 + (1 - \pi_0) 3$.Alternative: extending FDR to $R = 0$
National
National
National
 $E\left(\frac{V}{R} | R - 0 \right) = E(V/R | R - 1)$, then
 $E\left(\frac{V}{R} | R - 0 \right) = E(V/R | R - 1)$, then
 $E\left(\frac{V}{R} | R - 0 \right) P(R = 0)$
 $= \frac{\pi_0 - 1}{\pi}$.National
National
Nation

Summary	Multiple testing	Further research	Multiple testing
 Traditional multiplicity adjustments too conservative for high-dimensional data FDR methods offer a good shot at controlled hypothesis discovery FDR methods still under development Ample software available 	Hypothesis testing Multiple testing Classical error control Definitions of FDR Mixture model FDR Estimation Estimating F ₀ Estimating m ₀ Local false discovery rate Summary	 FDR methodology Proof of optimality? [Storey 2007, Perelman 2007] Correlated test statistics? [Pawitan 2006] Applications Gene-gene correlation Genome-wide association studies Genomic-imbalances: copy-number variation, LOH map QTL mapping 	Hypothesis testing Multiple testing Classical error control Definitions of FDF Misture model FDR Estimation Estimating F_0 Estimating π_0 Local false discovery rate Summary
People & Software	Multiple testing		
At Karolinska Institutet Yudi Pawitan, Stefano Calza, Arief Gusnanto, Elena Perelman At Institute Gustave Roussy, Paris Stefan Michiels At Genome Institute of Singapore Lance Miller, Karaturi Krishna Murty At www.bioconductor.org OCplus, multtest	Hypothesis testing Multiple testing Classical error control Definitions of FDR Mixture model FDR Estimation Estimating F ₀ Estimating m ₀ Local false discovery rate Summary		