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Overview

1. Technology & Workflow

2. Low-level analysis

e extracting expression values
e normalizing expression values
e quality control & gene selection

3. High-level analysis

e class discovery
e class prediction
e gene discovery

4. Summary



The Affymetrix Technology

Each target sequence is probed by multiple(10-20) 25-mers
Oligonucleotides are photolithographically synthesized in situ on each chip

mRNA from one source is hybridized to each chip (as opposed to two-color
systems)

Currently:

— up to 1.3 x 10° oligos corresponding to 47000 target sequences
— minimum amount of 5ug mMRNA
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Analysis of Affymetrix Data

Wet-lab = Image processing = Low-level analysis = High-level analysis

Low-level analysis: Extract a measurement of relative mRNA abundance that is
reasonably free of technical variation

High-level analysis: Relate the relative mMRNA abundance to the biology of interest

The high-level analysis of Affymetrix data is identical to the analysis of
two-color microarray data collected in a reference design!



Low-level Analysis



Extracting Expression Values

Several processing steps are required to get an expression value that is
representative of relative mRNA abundance and comparable between chips:

e Background correction
e Normalization

e Signal adjustment

e Signal extraction

e Normalization

Unfortunately, there is no agreement how to do this correctly.




Signal Extraction & Expression Measures — The Problem

Each 'gene’ (target sequence) is covered by 11-20 probe pairs consisting of

e perfect match (PM): exact substring of the target sequence,

e mismatch (MM): the PM with one central base altered.

. like this:
Perfect Match sequence: CGTTGTCCCAGGGACCGCTACCGAC
Mismatch sequence: CGTTGTCCCAGGCACCGCTACCGAC

Substitution of the complemantary base in the 13th nuclectide
Source: Affymetrix

Each target sequence is represented by a probe set of 22-40
measurements on each chip!
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An expression measure combines the multiple PM/MM measurements
into one number representative of relative mRNA abundance of the target
sequence on each chip




Example: Cell Line Data (8 chips)
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Expression Measures — Methods

Single chip methods compute expression values separately for each chip

Multichip methods use the full set of available chips to compute expression values

Probe pair data is is highly variable:

e inherent noise of mMRNA data,

e inherently different base intensities of individual probes, mostly due to different
C/G content

= some robust averaging across probe pairs is usually applied
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MASDS: single chip method, current standard suggested by Affymetrix. For each
probe set on each chip,

e compute an adjusted difference PM-MM for each probe pair (guaranteed to
be positive),
e compute a robust average (/= median) across the probe pairs.

Values are usually logarithmized or otherwise transformed [10]

RMA: Robust Multichip Average [11], for each probe set

e use all arrays 2 = 1,...n and all probe pairs j = 1,...k,
e compute y;; = background-adjusted log 2 of the PM intensities,
e robustly fit the model

Yij = Qi + Dj + €

e the fitted a; are the expression values
RMA is originally logged, but can be further transformed.
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MBEI: Model-Based Expression Index [14], implemented in dChip. For each probe
set

e use all arrays ¢ = 1,...n and all probe pairs 5 =1,...k,
e compute either Yij = PMZ] or Y;; = PMZJ — MMij,
e robustly fit the model
Yij = aiPj + €ij
e the fitted a; are the expression values

MBEI is commonly logged. It requires 10-20 chips for realistic results.

Alternatives: e.g.

e gcRMA: and extension of RMA that incorporates the different G/C ratio of
the the individual probes in a probe set

e PDNN: positional dependent nearest neighbor, tries to estimate the effect of
non-specific binding [22]

e Skip expression measure if you are interested only in differential
expression /gene lists [13]
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Expression measures: 1 chip, all probe-sets
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Normalization

Both the overall intensity level and the distribution of intensity values vary
between chips due to technical reasons:

e mMRNA amount
e sample processing
e scanner calibration

In order to be able to compare expression values between chips gainfully, the effect
of this technical variability should be reduced or eliminated: Normalization.

This requires the assumption that some aspect of the distribution of intensity
values remains constant between chips; different normalization procedures make

different assumptions.
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Normalization can be done

e before summarizing the the probes through an expression measure: probe-level
normalization

e after summarizing the the probes through an expression measure: probeset-level
normalization

Usually a normalization procedure is associated with a specific expression measure,
but in principle all combinations are possible (if not always useful). [3, 4]
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Global mean normalization: assumes constant average intensity on all chips (ie

little or balanced differential expression). Usually on probe-set level, usually with
MAS5H

Quantile normalization: assumes constant:  distribution (ie histogram) of
intensities on all chips (ie very little differential expression). Usually on probe
level, usually with RMA

Invariant set normalization: assumes constant intensities on a subset of genes

e identify a set of genes with small change in rank between chips,

e iteratively reduce this set until convergence,

e fit a smoothing curve to these genes between each chip and an artificial
reference chip (median chip),

e use the curve to normalize all genes.

Usually on probe level, usually with MBEI
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Alternative: use pairwise normalization scheme like for two-dye systems (loess-
normalization), either iteratively or to a artificial reference chip (mean/median
chip). Usually on the probe-set level — can be combined with most expression
measures [4]
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Does the choice of low-level analysis matter?

Yes! [9, 2, 3, 4] Choice of summary measure and normalization has serious impact
on all subsequent high-level analysis.

Evaluation & comparison of different low-level approaches are generally based on
artificial reference data (spike-in, dilution), trying to establish general superiority
of a strategy. Results so far suggest that no single approach is uniquely superior
for all possible data sets (e.g. clinical vs. experimental data).

An alternative is to assess the quality of the low-level analysis for a specific data
set, based on studying correlation of random pairs of genes [17].
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Quality Control

e Graphical:

— Digestion plots
— Chip images and residual plots
— MA-plots only of limited use
* too many pairs of chips
+ average MA-plots (between groups) with little QC information

e Numerical: Affymetrix presence/absence calls

— based on p-value for Wilcoxon test comparing PM and MM
— can be Present, Absent, Middling
— not optimal, but helpful
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Expression measures: 1 chip, only present calls

12

MASS

RMA

MBEI

T B 8 10 12

21



High-level Analysis
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The most common ways of analysing expression data can be summarized as
follows:

Class discovery: find subclasses of samples based on the expression pattern of a
large number of probesets: e.g. molecular subclasses of cancer

Class prediction: given a biological or clinical grouping of the samples, find a
small number of genes whose expression pattern can be used to reliably predict
the group membership of new samples: e.g. treatment response in patients

Gene discovery: given a biological or clinical grouping of the samples, identify
the genes that are differentially expressed between these groups and estimate their
fold changes: e.g. cell line response to treatment over time

Roughly speaking, CD and CP are generally used more for clinical and
observational studies than for biological and experimental studies. GD is suitable
for both situations, but most successful for experimental studies.
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Methods for analysing expression data can be classified in several ways:

e statistical vs. machine learning
e exploratory vs. inferential

e supervised vs. unsupervised learning

The first distinction is somewhat cultural: the second distinction is used more in
statistics, the third more in machine learning.

All this is very similar or identical between oligonucleotide/one-dye systems and
many cDNA /two-dye systems (i.e. those with a common reference)
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Class Discovery

Unsupervised learning or exploratory analysis - we try to identify groups of samples
with expression patterns that are similar within groups and dissimilar between
groups.

This begs the question of what we mean with similarity. This is an important
question for any kind of class discovery: What kind of distance measure do we use?

A distance measure defines for two samples s; and s; how similar their expression
pattern is:

dij = dist(s;, 55) = [((£16,- - - Tgi), (215, - - g5))

Different distance measures are in use [18], most commonly e.g.:

e Euclidean distance: d;; = /> 7_,(zki — T1;)?
e Correlation disctance: d;; = 1 — corr((x1i, - .. Z4i), (T1j,- .. Xg5))
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Note that the Euclidean distance uses the actual level of expression, whereas the
correlation distance only uses the pattern of expression across the genes!

Example: 72 lymphomas with 7129 genes [5]

e red = close, white = distant

e distance matrix is symmetric with zero diagonal

e some lymphomas seems to have a large distance from everybody else

e rather good agreement between Euclidean and correlation distance, but the small
distances are proportionally smaller for correlation distances
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Some Methods for Class Discovery

Hierarchical clustering: based on the idea of successively combining the closest
observations into clusters. This results in a hierarchy of possible groupings,
from all observations in separate singleton clusters to one cluster with all
observations. Ideally, we will find an obvious solution when looking at the
corresponding dendrogram.

There are different variants of hierarchical clustering, depending on how to
calculate the distance between non-singleton clusters. (e.g. [18, 5])

Non-hierarchical clustering: Many different procedures. These usually require
the specification of the required number of clusters beforehand, or alternatively
several runs of the same method with different numbers of clusters specified. [5]

Multidimensional scaling (MDS): tries to build a set of points in 2D or 3D space
where a) each point corresponds to one sample and b) the geometrical distances
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between points are as close as possible to the actual distances between samples
as measured by the chosen metric.
Different MDS methods exist. Usually some robust variant is preferable.

Principal component analysis (PCA) is an exploratory statistical technique with
a wide range of applications. Briefly, it constructs a set of new variables (as
many as samples in the set) that are weighted sums of the original vectors of
gene expression. These new variables are uncorrelated and explain successively
as much of the variability in the data as possible (i.e. the first variable explains
most, the second less and so on). If we limit ourselves to specific variants of the
Euclidean and correlation distance, the PCA can be used in a similar manner
as the MDS, by looking at scatter plots of the first two or three variables (i.e.
those with highest information content) and trying to identify groupings visually.

Example: Lymphoma

e dendrogram shows three to four clear clusters
e MDS and PCA show similar picture, though rotated; separation less clear
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Class Validation

Once reasonably well separated classes have been established, they need to be
characterized, confirmed and validated. This can and should be done in two ways:

e by relating the newfound classes to already established clinical or biological
properties of the samples: e.g. treated vs. untreated

e by applying the same procedure to an independent data set

Example: Lymphoma classification as ALL or AML

e dendrogram has one ALL, one AML, one mixed cluster; ALLs might be further
subdivided.
e MDS separates ALL and AML
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Other Applications

In exactly the same manner as the samples, we can also try to identify groups of
genes with similar expression pattern across samples. This is mostly done via
clustering, as the more graphical methods tend to break down with too many
genes, but it still requires the specification of a distance measure and a clustering
algorithm. This are usually taken to be the same as for the samples, but that is
not required.

Often the sample and gene clustering are displayed together with the expression
values in a heatmap.

Class discovery can usefully be employed for simple quality control by studying
whether a grouping in the data corresponds to potential confounders like array
batches, processing dates, operators, source of material etc.

Example: Prostate cancer [12] shows a clustered and annotated heatmap for
cDNA arrays
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Example: Lymphoma — samples are labeled with codes showing the sample source.
This is obviously confounded with AML/ALL — design?!
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Caveats

Results depend sometimes to a large degree on the choice of method and distance
measure.

Results also depend crucially on the list of genes employed: quality or signal
filtering of genes is ok, but selecting genes based on their association with a
property of interest is an incredibly bad idea.

Example: Lymphoma — four different groupings, depending on distance/method.
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Class Prediction

This is supervised learning — we are interested in one specific property of the
samples that separates them into two or more classes: e.g. treatment response,
tumor grade, distant metastasis.

The goal is to identify a rather small set of genes that allows a correct
classification of a new sample. A reasonable biological interpretation of these
genes Is nice, but secondary. In a way, this approach tries to by-pass proper
biological understanding of expression signatures in favor of immediate (usually
clinical) black-box prediction.

Methods for class prediction come in two flavors:

e classical statistical procedures or variations thereof, like discriminant analysis or
logistic regression,

e machine learning methods that are based on data mining procedures like nearest
neighbors or support vector machines.
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Misclassification Rate

The misclassification rate for new samples of any method can be estimated in
different ways:

e By looking at the misclassification rate in the original data set that was used
to fit the model or train the procedure. This is traditional in statistics when
we have many more samples than variables (e.g. R?), though it's tricky even
there. In case of expression data with many more variables (genes) than samples
this is useless and dangerous as it underestimates the true misclassification rate
severely.

e By using a leave-one-out crossvalidated misclassification rate: each sample is
in turn removed from the data set and the model is fit to/the procedure is
trained on the n — 1 left over samples; the model is used to predict the class
of the removed sample. By going through the whole sample and comparing
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the leave-one-out prediction and the actual class, we get a much more realistic
estimate of the true misclassification rate.

e This approach can be extended to leaving out £ samples at a time and predicting
them with the rest of the data.

e In extremis, this leads to the trainings/test data approach: the data is split
randomly in a trainings data set, where the model is fit, and a test data set,
where the model is applied for prediction. The misclassification rate on the test
data is a realistic estimate of the true misclassification rate, but using too little
data in the trainings set can reduce the power of the model to predict correctly.

Note that even this last approach is often not the gold standard of independent
replication: any systematic error in collecting, preparing or processing the samples
will be shared by trainings and test set.
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Example: Diagonal Linear Discriminant Analysis

This procedure is a simplification of a classical statistical procedure (LDA) that
disregards correlations between genes.Basically, we assign each new sample to the
group with the closest group center, where the group center is just the mean
expression signature over all genes, and close is according to a weighted Euclidean
distance:
_ 7 (:E — ZZ"k)Q
C(x1r, ... 2 ) = argming Z A

S
i=1 k

Example: Lymphoma, using two genes, predicting AML/ALL

e M/L = trainings sets, m/| = test set
e red = predicted AML, yellow = predicted ALL
e Misclassification rate: trainings set: 17%, test set: 25%
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Example: k-nearest neighbor classification

This is a simple machine learning procedure that classifies new samples according
to the majority vote among the k£ nearest neighbors.

This approach has two parameters that determine its properties: the choice of the
distance measure and the size of the local neighbourhood. The latter is often
chosen via leave-one-out cross-validation.

Note that for £k = n, every new sample is assigned to the most frequent class.

Example: Lymphoma, using two genes, predicting AML/ALL

e Misclassification rate using k = 1: trainings set: 0%, test set: 8%
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Finding a Small Set of Predictors

Note that it is often impractical to use the full gene set to predict a classification -
this would imply that the full microarray would have to be run on every new
sample for classification. The goal is rather to identify a small subset of genes that
do the same work in comparable quality. These can then be fit on a custom chip
or measured in a different manner.

For this purpose, genes are often ranked by the strength of the association with
the classification, e.g. the absolute value of their t-statistic. The procedure begins
the prediction with one or two top genes and adds successively more genes while
tracking the leave-one-out cross-validated misclassification error. The final model
can then be applied to a test set.

Example: Lymphoma, predicting ALL/AML with no more than 30 genes
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Comparison:

No. of genes | DLDA Cv  DLDA Test | KNN Cv KNN Test
2 0.19 0.28 0.03 0.11
3 0.19 0.19 0.03 0.08
4 0.14 0.31 0.00 0.11
5 0.06 0.08 0.08 0.08
10 0.06 0.08 0.03 0.08
15 0.03 0.08 0.03 0.08
20 0.06 0.08 0.03 0.11
25 0.06 0.08 0.06 0.11
30 0.06 0.06 0.06 0.11

Note that the cross-validate error is still somewhat optimistic for KNN!



Caveats

A lot of people get it wrong and report unrealistic low misclassification rates,
e.g.[20].

There is an element of randomness in the random split between trainings and test
set that can bias the results. It is more realistic to repeat this process multiple
times. [16]

Many different methods are available. Most of them are more or less reasonable,
and it is rare that one outperforms the others completely.
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Differential Expression

More cautious: identify genes that are differentially expressed (DE) and try to
build some testable biology on that. This is a very reasonable use of microarrays —
basically as a screening tool and for hypothesis generation. However, it often
ends with users staring at too short or too long gene lists.

The main problem is multiplicity. Very roughly we can distinguish three
approaches:

e classical tests with some kind of multiplicity correction [6]. These tests usually
ignore the relationships between genes.

e modified tests that recover some of the information from the relationships
between genes; these tests are often somewhat Bayesian and may or may not be
built around a multiplicity correction scheme (e.g. [19]

e data reduction approaches, where we try to reduce the number of hypothesis
that is tested simultanously. These may be data-driven (non-specific filtering)
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or biology-driven (pathways, ontologies), see [21].

Example: Lymphoma — running parallel t-tests, we find that 2079 or almost 30%
of all genes have p-value below 0.05.

Example: Lymphoma — we apply multiplicity corrections. Note that the false
discovery rate (FDR.BH, [1]) assumes that there is only a weak kind of
dependency between genes.

Example: Lymphoma — the SAM approach finds varying number of DE genes at
different levels of FDR, e.g. 731 at 4%.

Example: Lymphoma — [21] find a significant excess of regulated genes on
chromosome 7.
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Several multiplicity corrections and FDRs based on the raw p-values when
comparing ALL and AML yield the following number of regulated probe-sets:

Cutoff Raw p-values Bonferroni Holm FDR.BH FDR.BY

< 0.10 2675 192 192 1530 591
< 0.05 2079 164 165 1106 435
< 0.01 2675 192 192 1530 591

This table shows the trade off between specificity and FDR when running SAM:

Delta p0 False Called FDR
0.1 0.5640 41155 4575 0.5073
0.6 0.5640 908.8 2199 0.2331
1.2 0.5640 56.2 731 0.0434
1.7 0.5640 4.5 332 0.0077
2.2 0.5640 0.2 144 0.0008

Gl A WODN =




Observed d(i) values

Observed d(i) values

-6 -4 -2

-8

-6 -4 —

-8

SAM Plot for Delta = 0.1

cutlow: -0.136
cutup: 0.483
p0: 0.564
Significant: 4575
False: 4115.51
FDR: 0.507

Expected d(i) values

SAM Plot for Delta = 1.2

cutlow: -2.491 o .
cutup: 3.16 y& . ’ ’
p0: 0.564 .7 L
Significant: 731 . L7
.
False: 56.24 L7
FDR: 0.043 7
p
, e
’ ,
’ ,
4 ,
’ ’
4 .
4 .
’ ,
’ ,
4 ,
4 4
.
________ L/l
4 “
’ ,
4 ,
4 ’
4 ’
4 .
4 .
4 ,
4 ,
.
. L7 o
.
. Pt o
P , &

Expected d(i) values

Observed d(i) values

Observed d(i) values

-6 -4 -2

-8

SAM Plot for Delta = 0.6

cutlow: -1.217 o ’
® ‘S
cutup: 1.753 4 .
4 S
p0: 0.564 . .
s
Significant: 2199 L7
False: 908.83 "
FDR: 0.233 AP
,
_______________ e —
.
&

Expected d(i) values

SAM Plot for Delta = 1.7

cutlow: -3.367 o ‘
cutup: 4.187
p0: 0.564

False: 4.54 4 ’
FDR: 0.008 ‘

Expected d(i) values

58



Chromosome 7
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Summary

Low-level analysis is an active research area. While a strong signal will show up
more or less regardless of the approach, a suitable choice will improve the power of
the analysis.

While the distinction between class discovery, gene discovery and class prediction
are in practice not rigid, it may be a good idea to position your research interest
somewhere in the triangle.

Class prediction is hard. Prepare for a large sample size and repeat the
trainings/test set split.

Detecting DE is hard unless you have a very strong fold change or many regulated
genes.

Simple methods can be competitive, plus we understand them.

If you're going to be seriously involved with microarray expression analysis, have a
look at Bioconductor [7].
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