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Brief Report

Abstract: Biomedical laboratory experiments routinely use negative 
controls to identify possible sources of bias, but epidemiologic studies 
have infrequently used this type of control in their design or measure-
ment approach. Recently, epidemiologists proposed the routine use 
of negative controls in observational studies and defined the structure 
of negative controls to detect bias due to unmeasured confounding. 
We extend this previous study and define the structure of negative 
controls to detect selection bias and measurement bias in both obser-
vational studies and randomized trials. We illustrate the strengths and 
limitations of negative controls in this context using examples from 
the epidemiologic literature. Given their demonstrated utility and 
broad generalizability, the routine use of prespecified negative con-
trols will strengthen the evidence from epidemiologic studies.

(Epidemiology 2016;27:637–641)

Negative controls are used in laboratory science to help 
detect problems with the experimental method. In epi-

demiologic studies, a negative control outcome acts as a sur-
rogate for the actual outcome—the negative control should be 
subject to the same potential sources of bias as the outcome 
but is not caused by the exposure of interest. Negative con-
trol exposures are conceptually the same, but defined relative 
to the actual exposure. Lipsitch et al.1 defined the structure 
of negative controls to detect unmeasured confounding and 
described by way of example how negative controls could be 
used to detect selection bias and measurement (information) 

bias. Here, we define the causal structure of negative controls 
with respect to selection bias2 and measurement bias,3 and 
illustrate their use with published examples.

NEGATIVE CONTROLS TO DETECT  
SELECTION BIAS

For clarity, we have focused on structures of selection 
bias under the null (no effect of exposure) and have focused 
on four structures we would expect to be most relevant to 
epidemiologic research (Fig. 1).2 Selection bias occurs when 
the analysis conditions on a third variable C that is a com-
mon descendant of exposure A and outcome Y or a common 
descendant of unmeasured causes of either A or Y or both, 
denoted UA or UY.2 Defining C as the combination of censor-
ing mechanisms during enrollment, follow-up, and analysis, 
standard epidemiologic measures are limited to the stratum of 
C = 0 (uncensored, available data). We denote negative control 
exposures as NA and negative control outcomes as NY—they 
could be dichotomous, categorical, or continuous.

A common form of selection bias can result from con-
ditioning on a common descendant of the exposure and out-
come (Fig. 1A). For example, in case–control designs where 
selection into the study (C) conditions on the outcome (Y → 
C), selection bias results if the exposure affects participant 
selection (A → C) differentially by case/control status. This 
bias structure could also occur in the re-analysis of a case–
control study for a secondary outcome Z, which is intermedi-
ate between the exposure and outcome: A → Z → Y → C. This 
design is used in genetic epidemiology studies that repurpose 
costly genomic measures A and look at their association with 
additional outcomes Z.4,5 Negative control outcomes or expo-
sures to detect this type of bias would need to similarly affect 
participant selection (NA → C, Table, example 1 or NY → C, 
Table, example 2).

A second form of selection bias can occur in cross-
sectional or retrospective studies when the outcome Y and an 
unmeasured cause of the exposure UA affect study enrollment 
C (Fig. 1B). This bias can be detected by using a negative con-
trol exposure that shares the same unmeasured parent of the 
exposure (UA → NA, Table, example 3) or a negative control 
outcome that similarly affects enrollment (NY → C).

A third form of selection bias can occur when a study 
conditions on a common descendant of the exposure and an 
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unmeasured cause of the outcome (Fig. 1C). In per-protocol 
analyses of randomized trials, investigators limit the analy-
sis to individuals that complied with their respective group 
assignments. Bias results if compliance (C) is determined by 
treatment assignment (A) and by unmeasured characteristics 
(UY) that affect both individuals’ willingness to comply with 
their assigned treatment and their outcome.6 For example, if 
individuals assigned to treatment who comply with their regi-
men are more health conscious than noncompliers, a naive 
per-protocol analysis could overestimate the benefits of the 
treatment. Figure 1C also applies to selection bias in prospec-
tive studies if exposure A and an unmeasured cause of the 
outcome UY affect loss to follow-up C. A negative control out-
come that shares the same unmeasured parent as the outcome 
(UY → NY, Table, example 4) or a negative control exposure 
that similarly affects enrollment, loss to follow-up or compli-
ance (NA → C) can be used to detect this type of selection bias.

Finally, selection bias can occur if a cause of the expo-
sure UA and a cause of the outcome UY both affect enrollment 
C (Fig. 1D). One example is volunteer bias in cohort studies,2 
where individuals’ underlying characteristics might affect 
their exposures and health outcomes as well as their decision 
to enroll in the study. This bias could be detected by using a 
negative control outcome that shares the same parent as the 
actual outcome (UY → NY) or a negative control exposure that 
shares the same parent as the actual exposure (UA → NA); 
however, we are unaware of a study that has used negative 
controls for this bias structure.

NEGATIVE CONTROLS TO DETECT 
MEASUREMENT BIAS

Many studies have measurement error so that inves-
tigators observe Y*, which is an error-prone version of the 
outcome Y.3 For example, if Y is an enteric infection that 
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D

FIGURE 1.  Simplified causal diagrams of selection bias for exposure A and outcome Y along with negative control exposures (NA) 
and outcomes (NY). In all four structures, selection bias results from conditioning on C, a common descendant of (A) exposure A 
and outcome Y, (B) cause of exposure UA and outcome Y, (C) exposure A and cause of outcome UY, or (D) cause of exposure UA 
and cause of outcome UY.
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causes diarrhea, Y* could be caregiver-reported diarrhea 
symptoms. In the diagrams, we assume UY accounts for all 
other unmeasured causes of Y* beyond Y. Similarly, A* can 
be subject to unmeasured sources of error UA. We focus 
our definitions on differential measurement errors (Fig. 2) 
because they are most likely to cause bias and the conse-
quent bias is often the least predictable.3 For parsimony, we 
have not provided formal definitions of negative controls 
under more complex (or simple nondifferential) measure-
ment error scenarios, but in principle Figure  2 could be 
extended to accommodate them—for example, removing 
edges Y → UA or A → UY defines negative controls for inde-
pendent, nondifferential errors.

Differential outcome measurement error occurs when 
A influences the measured outcome Y* through UY (Fig. 2A). 
In an unblinded study, physician follow-up (UY) may be 
increased in treated patients compared with the untreated  

(A → UY), and selective follow-up causes differential mea-
surement error of Y. Differential outcome reporting can also 
bias observational studies and unblinded trials with subjec-
tively reported outcomes,7 where participant knowledge of 
their exposure or treatment assignment could influence report-
ing. An ideal negative control outcome for this scenario shares 
a common source of correlated measurement error (UY) with 
the true outcome (Table, example 5). Negative control expo-
sures for differential outcome measurement error also exist—
placebo drugs in clinical trials are a classic example. Negative 
control exposures that act like a placebo can be devised for 
observational studies (Table, example 6).

Differential exposure measurement error is possible 
when the exposure A is measured concurrently with or after 
the occurrence of the outcome Y (Fig. 2B) and is of greatest 
concern in retrospective or cross-sectional studies. For exam-
ple, retrospective case–control studies can be biased if they 

TABLE.   Examples of Studies that Have Used Negative Controls to Detect Selection or Measurement Bias Following Bias 
Structures in Figures 1 and 2

Example
Bias 

Structure Design Exposure (A) Outcome (Y)
Potential Source  

of Bias
Negative  
Control*

Selection bias

1. Ruckart et al.8 Figure 1A Retrospective 

case–control

Chemical drinking water 

contaminant exposure 

during trimesters 1–2

Hematopoietic 

cancers, neural 

tube defects and 

oral clefts

Selective study 

enrollment among 

cases versus controls

Exposure (NA)

Chemical drinking water 

contaminant exposure 

during trimester 3

2. Ivers et al.9 Figure 1A Retrospective 

case–control

Oral cholera vaccine Diarrhea stool 

sample positive 

for cholera

Selective study 

enrollment among 

cases versus controls

Outcome (NY)

Noncholera diarrhea

3. De Groot et al.10 Figure 1B Retrospective 

case–control

Use of ACE inhibitors, 

statins, and proton  

pump inhibitors

Community-

acquired 

pneumonia

Selective study 

enrollment among 

hospitalized patients

Exposure (NA)

Selective serotonin 

reuptake inhibitors

4. Danaei et al.11 Figure 1C Prospective 

cohort

Statin use Diabetes Loss to follow-up that is 

affected by exposure

Outcome (NY)

Peptic ulcers

Measurement bias

5. Ercumen et al.12 Figure 2A Randomized 

controlled trial

Safe storage and 

chlorination of  

drinking water

Reported diarrhea Differential reporting error 

due to courtesy bias

Outcome (NY)

Skin rash, toothache

6. Colford et al.13 Figure 2A Prospective 

cohort

Swimmer exposure to 

Enterococcus levels  

in water

Reported diarrhea Differential reporting 

error, unmeasured 

confounding

Exposure (NA)

Enterococcus levels 

assigned to 

nonswimmers

7. Zaadstra et al.14 Figure 2B Retrospective 

case–control

Viral infections in early 

childhood

Multiple sclerosis More accurate exposure 

recall among cases

Exposure (NA)

Broken arm, concussion, 

and tonsillectomy

8. Khush et al.15 Figure 2B Prospective 

cohort

Fecal indicator bacteria in 

drinking water

Reported diarrhea Exposure measured 

concurrently with 

outcome could be 

influenced by the 

outcome itself

Outcome (NY)

Cough, congestion/coryza

The eAppendix (http://links.lww.com/EDE/B56) includes a more detailed discussion of each example.
*The rationale for each negative control listed in the table was an effect that would be impossible by the hypothesized mechanism, with one exception: for Colford et al.13 (example 6),  

the rationale was to leave out an essential ingredient (water exposure).

http://links.lww.com/EDE/B56
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rely on self-reported exposures A* as a proxy for true expo-
sures A and cases remember exposures more accurately than 
controls. Negative controls for exposure measurement error 
need to share correlated errors (UA) with the exposure (Table, 
example 7). The bias described in Figure 2B can also occur if 
an outcome is measured concurrently with an exposure, where 
the measured exposure (A*) is used as a proxy for the same 
measure at a time in the past that is relevant for causing dis-
ease (A) (Table, example 8).8–15

DISCUSSION
We defined the structure of negative controls to detect 

common forms of selection and measurement bias in obser-
vational studies and randomized trials. The examples in the 
Table illustrate many recent applications, and the structural 
definitions in Figures 1 and 2 generalize to further appli-
cations we have not discussed—for example, Figure  1C 
describes the structure for healthy worker bias2 and healthy 
user/adherer bias.16 For extensions beyond the detection 
of bias, recent efforts have used negative controls in sen-
sitivity analyses to quantify the magnitude of bias from 
unobserved confounding,17 as a tool to remove bias in stan-
dardized mortality ratios,18 and as a basis for large-scale 
empirical calibration of P values in drug safety studies.19 
We envision similar extensions for the types of negative 
controls defined here.

Negative controls have some limitations that arise in 
practice. Lipsitch et al.1 characterized negative controls as a 
“blunt tool” to detect bias in the context of confounding, and 
that characterization is equally apt in the context of selection 
and measurement bias. Negative controls often lack specific-
ity in the type of bias that they detect—many examples in the 
Table illustrate this limitation (Discussion in the eAppendix, 

http://links.lww.com/EDE/B56). Moreover, negative controls 
may identify the presence of bias but cannot in general deter-
mine its direction or magnitude without additional assump-
tions.1 Another limitation that many negative controls share is 
that they often fail to provide a definitive test of the absence 
of bias.1,20 All of these limitations coalesce into a common 
challenge for selecting negative controls: a control must meet 
its assumed structural definition, otherwise it can be an insen-
sitive or inappropriate diagnostic for bias. Thus, the ability of 
a negative control to adequately detect bias ultimately relies 
on the plausibility of (often untestable) assumptions encoded 
in its causal diagram. Finally, prespecification of primary 
outcome and exposure definitions helps prevent the selective 
presentation of favorable results, and prespecification and 
complete reporting of negative controls would prevent similar 
problems.20

Selection bias or measurement bias threaten nearly 
every epidemiologic study design. Given their demonstrated 
utility and broad generalizability, the routine use of negative 
controls will help detect selection bias and measurement bias 
in epidemiologic studies.
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