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Abstract

Background: Despite the ease of interpretation and communication of a risk ratio (RR), and several other advantages
in specific settings, the odds ratio (OR) is more commonly reported in epidemiological and clinical research. This is
due to the familiarity of the logistic regression model for estimating adjusted ORs from data gathered in a
cross-sectional, cohort or case-control design. The preservation of the OR (but not RR) in case-control samples has
contributed to the perception that it is the only valid measure of relative risk from case-control samples. For cohort or
cross-sectional data, a method known as ‘doubling-the-cases’ provides valid estimates of RR and an expression for a
robust standard error has been derived, but is not available in statistical software packages.

Methods: In this paper, we first describe the doubling-of-cases approach in the cohort setting and then extend its
application to case-control studies by incorporating sampling weights and deriving an expression for a robust
standard error. The performance of the estimator is evaluated using simulated data, and its application illustrated in a
study of neonatal jaundice. We provide an R package that implements the method for any standard design.

Results: Our work illustrates that the doubling-of-cases approach for estimating an adjusted RR from cross-sectional
or cohort data can also yield valid RR estimates from case-control data. The approach is straightforward to apply,
involving simple modification of the data followed by logistic regression analysis. The method performed well for
case-control data from simulated cohorts with a range of prevalence rates. In the application to neonatal jaundice, the
RR estimates were similar to those from relative risk regression, whereas the OR from naive logistic regression
overestimated the RR despite the low prevalence of the outcome.

Conclusions: By providing an R package that estimates an adjusted RR from cohort, cross-sectional or case-control
studies, we have enabled the method to be easily implemented with familiar software, so that investigators are not
limited to reporting an OR and can examine the RR when it is of interest.
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Background

The familiarity and wide adoption of logistic regression
analysis for binary outcomes has resulted in the indepen-
dent effect of a risk factor being most commonly reported
as an adjusted odds ratio (OR) from logistic regression.
The ease of communication and interpretation of a risk
ratio (RR, also known as relative risk) is well recognized
[1] and it is common for investigators to present and
discuss the OR as an approximation to a RR for a rare out-
come. However, each of these estimators comes with some
consequences [2] and their advantages and disadvantages
have been discussed extensively in the epidemiological lit-
erature. An important limitation of the OR, that is not
shared by the RR, is the noncollapsibility that is the sub-
ject of ongoing discussion [3]. As a result of this property,
the OR can vary across sub-groups defined by a vari-
able unrelated to the exposure, which imposes limitations
on its interpretation. Another disadvantage of the OR
that is not shared by the RR is that it is sensitive to the
choice of scale [4]. Thus there are situations where an
adjusted RR can provide a better understanding of the
data and research findings [5] and overcome the limita-
tions of only reporting an OR [6]. Of particular concern in
global public health is the misinterpretation of the OR as
a RR, supporting exaggerated claims of the magnitude of
associations [7].

If the underlying disease process follows a relative risk
model, and not a logistic model, methods have long been
available for estimating the RR from cohort or cross-
sectional data: using log-binomial regression [8], or if this
has convergence issues, Poisson regression [9] or Cox
regression [10]. In the early years of case-control stud-
ies, a simple “correction” to the OR was proposed to yield
a less biased estimate of the RR [11], but this was later
shown to be biased in the presence of confounding [9].
A paper discussing eight methods of estimating the RR
[12] from cohort or cross-sectional data presented an
intriguing approach referred to as “doubling-the-cases’,
motivated in the early 1980’s by Miettinen [13], where
manipulation of the data enables the RR to be estimated
using standard logistic regression. Assuming the outcome
in the data is coded as 1 for cases and O for non-cases,
the data set is expanded with an additional record for each
case, in which the outcome is changed to 0, and a logistic
regression analysis of this expanded data set provides an
unbiased estimate of the RR. However, the naive standard
error reported by the logistic regression is only valid for
low incidence rates, and is otherwise biased upwards, rep-
resenting the additional uncertainty that has been added
to the data by having the same individual covariate pro-
file associated with being both a case and a non-case.
A robust sandwich estimator, first proposed in the early
1990s [14], corrects for the doubling of cases in the mod-
ified data, and has since been shown to perform well

Page 2 of 15

in simulation studies [12, 15]. However, statistical soft-
ware packages do not provide an estimate of this standard
error, so that a valid measure of precision is not easily
available for the RR estimate. As a result of this compu-
tational challenge for cohort and cross-sectional studies,
and the lack of methodology and software for case-control
sampling, the simple and intuitive doubling-of-cases
approach is absent from the standard tool-box of health
researchers.

The early work that developed the robust standard error
[14] demonstrated that the doubling-of-cases approach
can also be applied to case-cohort data. Since the subco-
hort is a random sample of the whole cohort, it can be
easily shown that the logistic regression of the expanded
case-cohort data provides a valid estimate of the RR, and
the prevalence can be recovered from the intercept using
the subcohort sampling fraction. Unlike the subcohort
in a case-cohort study, when a case-control sample is
drawn from a cohort, these data are not representative of
the larger cohort, resulting in the distortion of the esti-
mate of RR (but not of the OR). However, if the sampling
fractions are known, the cohort can be represented by up-
weighting the observed data using sampling weights [16].
Since the doubling-of-cases approach uses the standard
logistic regression model, it is straightforward to accom-
modate such sampling weights for valid estimation of the
RR from case-control samples. However, additional work
is required to incorporate the weights when correcting for
the overestimation of variability due to the doubling of
cases.

In this paper, we describe the doubling-of-cases approach
in the cohort setting and then extend its application to the
estimation of adjusted RR from case-control data, where
the controls are selected either by random or stratified
sampling. We derive an expression for the robust standard
error and facilitate the use of the method by implement-
ing it as an R package. We evaluate the performance of the
approach using simulated data, and illustrate its applica-
tion in the analysis of the effect of preterm birth on the
risk of neonatal jaundice.

Methods

Doubling of cases in cohort studies

To introduce the doubling-of-cases approach for estimat-
ing the RR, first consider a crude analysis using a cohort
of N subjects, with a binary disease indicator Y (1 for
cases and 0 for non-cases) and a binary exposure X (e
for exposed and e for unexposed). As illustrated in Fig. 1,
the doubling-of-cases approach involves expanding the
cohort, by including each case twice, where the outcome
on the second record is coded as a non-case. Such mod-
ification does not change the number of cases in the
expanded cohort (where the outcome is denoted by Y*),
but increases the number of non-cases to N (see Fig. 1
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Fig. 1 Doubling the cases in a cohort of N subjects, where N subjects are cases. The first subscript indicates the exposure status (e for exposed and
e for unexposed) and the second subscript indicates the outcome (1 for cases and 0 for non-cases). A dot (") for either suffix denotes the total (i.e.,
no stratification on that variable)

and details in Table 1). Hence, the crude OR computed
from the expanded cohort is identical to the RR from the
original cohort.

Mantel-Haenszel OR from expanded cohort

In the presence of an additional categorical confounder, Z,
the adjusted RR can be computed from the cohort using
the Mantel-Haenszel approach, which is a weighted aver-
age of the RRs within each of the strata defined by Z [17].
Similarly, the Mantel-Haenszel OR from the expanded
cohort is a weighted average of the ORs within each of the
expanded strata (which are shown in Table 1 to be identi-
cal to the RRs in the original strata) using weights w** =

(Né‘lNéf) / <Nk + N]i) for the OR from the k-th expanded
stratum, which differ from the weights used to compute

the Mantel-Haenszel RR [17]: wK = (Né‘lNéf /N* for
the RR from the k-th stratum. It will be shown below
that both the Mantel-Haenszel RR and the expanded data
Mantel-Haenszel OR are estimating the same underlying
parameter, the true adjusted RR.

Logistic regression of expanded cohort
The doubling-of-cases approach in regression analysis of
cohort and case-cohort studies was first described in
1993 [14], and more recently was referred to as expanded
data logistic regression [15]. Here we will briefly describe
the approach by generalising the expanded data Mantel-
Haenszel OR introduced above.

Assume the following relative risk log-binomial regres-
sion model for the probability of being a case for an

Table 1 Equivalence of the crude RR computed from a cohort of N subjects and the crude OR computed from the expanded cohort
with N + N records, where N1 = Ng1 + N31 is the total number of cases in the original cohort

A) Cohort Y =1 Y=0
X=e Ne1 Neo
X=e Nz Nzo
B) Expanded cohort Y* =1 Y*=0
X= Nsl Ne.
X=e Nz N,

Total Prevalence Crude RR
Ne. = Net + Neo Pe = Net/Ne. RR = pe/pz
Ne, = Na1 + Nao pe = Na1/Na.
Odds Crude OR
oddsy = Nei/Ne. OR* = pe/pe

oddsg = Nz1/Na,




Ning et al. BMC Medical Research Methodology (2022) 22:157

individual with exposure X in stratum Z:
InPr(Y=1|X,2)=a+BX+yZ, (1)

where exp? represents the adjusted RR (with adjustment
for Z) [18-21]. When the cohort is expanded by doubling
the cases, the prevalence in each exposure group in the
original cohort becomes the odds in that exposure group
in the expanded cohort (see Table 2). Hence, a log-linear
model for the prevalence in the original cohort gives rise
to alog-linear model for the odds, i.e., a logistic regression
model, in the expanded cohort:

Pr(Y*=1|X,2)
n
1-Pr(Y*=1|X,2)

=a+pBX+yZ, (2)

which estimates the same regression coefficients as
the log-binomial regression model in Eq. (1). The
robust sandwich-type standard error (SE), derived by the
same authors [14] to correct for this overestimation, is
described in the next section.

Robust Sandwich-type SE for expanded data logistic
regression

It can be readily seen from Table 2 that the probability of
the modified outcome being 1 in the expanded cohort is:

PrY =1|X,2)

o pr(Y* =1|X,Z) = .3
p=Pr( XD = ha=1x2 ©

For the relative risk regression model defined in Eq. (1),
the following pseudo log-likelihood was used [14] for esti-
mating the regression coefficient, 8, and its variability:

I=) (Yiln@))+In(1 —p))}

'MZ

I
—

I
M=

{{Y;In() + A = Y)In(1 — p)] +Y:In(1 — p))},
1

(4)
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where the subscript i indicates the i-th subject in the
original cohort of N subjects. This pseudo log-likelihood
is exactly the log-likelihood of the logistic regression
of the expanded cohort, where the first component (in
the square brackets) represents the regular log-likelihood
contribution from the N subjects in the cohort, and the
second component corresponds to the additional ‘non-
cases’ created by doubling the cases. Hence, the regular
maximum likelihood estimate from logistic regression
analysis of the expanded data provides a valid estimate for
B = In(RR).

To describe the robust sandwich-type SE that was pro-
posed [14] for the estimated In(RR), it is useful to intro-
duce a column vector to collectively denote the covariates
observed from the i-th subject in the original cohort: x; =
(1,X;, Z:)T, where the first element corresponds to the
intercept term in Eq. (1). The components in construct-
ing the sandwich-type SE are derived from the following
first-order derivative of the pseudo log-likelihood, /:

R

i=1 i=1

::rl l’

(5)

1_pl b; i

where ¥ = Y;(1—p}) —p} is derived from the error terms
(i.e., the difference between the observed outcome and the
estimated probability) from the logistic regression of the
expanded cohort. For a case in the original cohort, where
Y; = 1,rf = 1—p})+(—p}) is the summation of the error
terms corresponding to the two records in the expanded
cohort, one as a case and the other coded as a non-case but
with the same covariates (and hence the same probability
p;). For a non-case where Y; = 0, r} = —pf is the error
term corresponding to the single record in the expanded
data for this subject.

The proposed robust covariance matrix for the regres-
sion coefficients, (8, )T is then:

V = Hy 'HyH?, 6)

Table 2 Equivalence of the adjusted RR assessed in a log-binomial regression model of the original cohort with N subjects and the
adjusted OR assessed in a logistic regression model of the expanded cohort with N + N1 records, where N1 = Ngy + Nz is the total

number of cases in the original cohort

A) Cohort Expected Y =1
X=e Ne exp{a + B + yZ}
X=eé Nz exp{a + yZ}

B) Expanded cohort Expected Y* =
X=e Ne expla + B+ yZ}
X=¢ Nz exp {a + y 7}

Expected Y =0

Ne.(1 —exp{a + B+ yZ})
Nz (1 —exp{a +yZ})

Expected Y* =0 Odds
Ne. exp{a+ B +yZ}
Na, exp{a +yZ}
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where H 1 is the inverse of the hessian matrix of [, esti-
mated by the naive covariance matrix from the logistic
regression of the expanded cohort, and H; is the covari-
ance matrix of U, estimated by:

N N
H2 = Z UjUiT - Z??foxix (7)
i=1 i=1
and the 77 terms are computed from the residuals of the
expanded data logistic regression as described above.

Doubling of cases in case-control studies

When a case-control sample is drawn from a cohort, the
sample prevalence is solely dependent on the case:control
ratio. However, a case-control sample can be regarded as
“intentionally missing” data, and provided the sampling
fractions are known, valid cohort estimates (including
the RR) can be obtained by up-weighting the sample
observations using inverse probability weights to “recon-
struct” the cohort. It is common for all cases in the
cohort to be sampled into the case-control study, and
for controls to be matched to cases on one or more
characteristics. In such studies, the weight is 1 for the
cases and the weights for controls are calculated as the
inverse of the sampling fraction of the non-cases within
the matching strata. If controls are selected by simple
random sampling, the weights are simply the inverse
of the overall sampling fraction of non-cases in the
cohort.

Weighted logistic regression of expanded case-control data
As a direct extension of expanded data logistic regres-
sion for estimating the RR in cohort studies, we propose a
weighted logistic regression of expanded data from a case-
control study. As before, each case in the case-control
sample is doubled, but the analysis of the expanded data is
conducted with a weighted logistic regression, where the
weight of each individual in the expanded data is inher-
ited from the sampling fractions that yielded the original
case-control sample. Note that doubling of cases is a part
of the analytical approach and does not affect the sam-
pling of case-control data or the calculation of sampling
fractions. Using similar arguments as for cohort data [14],
we propose a robust sandwich-type SE for the estimate of
the B parameter in the logistic regression model, i.e., the
estimated In(RR), and describe it in the next section.

Robust SE for expanded data weighted logistic regression of
case-control data

Consider the analysis of a case-control sample of n sub-
jects drawn from a cohort of size N. Assuming all cases
and a simple random sample of controls are included,
the sampling weight (denoted by w) of each case in this
case-control sample is 1, and for each control it is the
number of controls in the cohort divided by the number of
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sampled controls. For matched case-control samples, the
sampling weights for controls are the ratios of available
controls to sampled controls within each stratum defined
by the matching factors. An unbiased estimate of In(RR)
can be obtained from this case-control sample by using
the doubling-of-cases approach, provided the individual
sampling weights are incorporated in the analysis. More
specifically, the pseudo log-likelihood becomes a weighted
pseudo log-likelihood:

Ly =Y (wYiln@}) + wiIn(1 — p})}, 8)

i=1

which is the log-likelihood corresponding to the weighted
logistic regression analysis of the expanded case-control
sample. The first order derivative of /,, is:

N n n

u, = Zw,-l,li = Zwi{)/,'(l -p7) —p}k}xiT = ZwirfxiT.
i=1 i=1 i=1

)

Following the derivation of Eq. (6) for cohort designs,
we propose the following as a robust covariance matrix for
the estimates from a weighted analysis:

Vi = H [ HyoH,}

i (10)
where HM_/I1 denotes the inverse of the Hessian matrix of
Iy and is estimated by the naive covariance matrix from
the (weighted) logistic regression of the expanded case-
control data, and H,; is the covariance matrix of U,
estimated by:

n n
2 27 T w32 T
H,, = E wiU;U; = E (wir])“x; x;.
i=1 i=1

(11)

Simulation study

To evaluate our proposed estimator and robust SE for the
RR from case-control data, we simulated a cohort consist-
ing of N = 1000 subjects, where 400 subjects were male
(Z = 1) and the remainder were female. To generate a
confounding effect of sex, the probability of being exposed
(X = 1) was 0.4 for males and 0.2 for females and the out-
come generated from the following log-binomial model:

InP(Y=1|X,2) =a+InRRX +In(1.5)Z. (12)

The intercept term was assigned values corresponding
to prevalence rates of approximately 10%, 20%, 30% and
40%. We considered true values of RR = 1, 1.25, 1.5, 2. For
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each simulated cohort, we implemented four designs: a
1:1 and 1:2 case-control ratio, each with controls selected
randomly or matched on sex.

For the simulated cohort data, we estimated the RR
using the log-binomial regression model (the true data-
generating model), the expanded data logistic regression
model, and other simple/naive estimators: the Mantel-
Haenszel RR, expanded data Mantel-Haenszel OR, and
the naive logistic regression model (where the estimated
OR is viewed as an approximation for the RR). The case-
control data was analysed by weighted logistic regression
of the expanded data and by logistic regression of the orig-
inal case-control sample. Although an unweighted logistic
regression analysis with adjustment for matching factors
is valid for estimating the OR of other covariates, we chose
to perform a weighted analysis of matched case-control
data to also enable valid estimation of the coefficients
of the matching factors. The distributions of the esti-
mates from the doubling-of-cases approaches over 2000
simulation cycles under each scenario were examined on
boxplots, where they were compared to the estimates from
the correct analysis (Mantel-Haenszel RR or log-binomial
model) and the naive estimates. The performance of the
method was evaluated by averaging the bias, empirical
SE and robust SE, and computing the coverage of the
(robust) 95% confidence interval, the type I error rate
(when the true RR was 1) and power (when the true RR
was not 1).

lllustrative example

We analysed risk factors for neonatal jaundice in infants
born to Swedish women between 1992 and 2002 [22].
From the singleton livebirths recorded by the Swedish
Medical Birth Register during this calendar period, we
excluded infants at risk of neonatal jaundice due to known
maternal alloimmunisation or potential alloimmunisation
due to a history of transfusion, resulting in 657,264 infants
for analysis. In addition to the sex and prematurity of the
infant, information was available for maternal age, body
mass index (BMI), parity (nulliparous or multiparous) and
smoking status. After excluding births with missing infor-
mation on maternal BMI or smoking status, the final
cohort consisted of 547,466 births. Maternal BMI was
dichotomised at 25, and maternal age was dichotomised at
35 years. We assessed the association of neonatal jaundice
with the six factors described above and the presence of an
interaction between preterm birth and parity by analysing
the full cohort and a 1:2 case-control sample matched on
maternal age and the sex of the infant. The cohort data
was analysed using naive logistic regression, log-binomial
regression and expanded data logistic regression mod-
els. The matched case-control sample was analysed using
weighted logistic regression and expanded data weighted
logistic regression.
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Implementation

All analyses were performed using R (version 4.0.1).
We implemented the expanded data (weighted) logistic
regression model as an R package named Doublin-
gOfCases (available from: https://github.com/nyilin/
DoublingOfCases). The naive logistic regression model
was implemented by the glm function with family =
binomial(link = “logit”), and for the weighted logistic
regression, the inverse sampling weights were specified
via the weights option. The log-binomial regression model
was implemented by the glm function with family =
binomial(link = “log”).

Results

Simulation study

For the simulated cohorts, the expanded data Mantel-
Haenszel OR and expanded data logistic regression OR
performed well, providing estimates similar to the Mantel-
Haenszel RR and the log-binomial RR respectively, regard-
less of the prevalence in the cohort or the true value
of the RR (see Figs. 2 and 3A). The bias in the naive
OR increased as expected with larger values of RR
and prevalence. Simulation scenarios with a prevalence
rate of 40% and true RR of 1.5 or 2 approached the
boundary of the parameter space of relative risk mod-
els, with the maximum event probability close to 0.80
and 0.95 respectively. The log-binomial regression model
failed to converge in 2 and 1432 of the 2000 simula-
tion cycles in these two scenarios respectively, but in the
cycles where it converged, it provided valid estimates of
the RR (see Appendix Table 5 for detailed simulation
results).

The “Cohort” column in Fig. 4 summarises the good
performance of the expanded data logistic regression esti-
mator in all simulation scenarios, with estimated RR close
to the true value, coverage close to 95%, type I error close
to 5% and power comparable to that of the log-binomial
regression model. The robust SE of the estimated RR from
the expanded data logistic regression model was similar
to the empirical SE, and similar to the variability from the
log-binomial regression model when the latter converged
(see Appendix Table 5). The naive logistic regression
model had a type I error close to 5% and power com-
parable with the expanded data logistic regression model
in all scenarios, as might be expected. Although the esti-
mated OR was a reasonable approximation to the RR (with
small bias and coverage close to 95%) when the exposure
had no effect (i.e., when RR = 1) or when the prevalence
was low (10%), there was an increase in bias and decrease
in coverage with increasing prevalence, especially when
estimating a larger RR.

A similar performance was observed for the weighted
logistic regression and expanded data weighted logis-
tic regression models when applied to case-control data.
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Fig. 2 Estimated RR across 2000 simulations using different levels of prevalence and true RR values. Estimates were computed using the
Mantel-Haenszel (M-H) RR (clear boxes) and expanded data M-H OR methods (shaded boxes)

Figure 3B presents the distributions of the RR estimates
from 1:1 and 1:2 matched case-control studies, and the
performance in terms of bias, coverage, Type I error and
power are illustrated for random and matched 1:1 sam-
pling in the second and third columns of Fig. 4 (details in
Appendix Table 6).

lllustrative example

A total of 21,441 (3.9%) of the infants in the cohort
of 547,466 births were diagnosed with neonatal jaun-
dice. The majority of these cases were firstborn infants,
with only 3148 born to multiparous mothers. The crude
OR associated with preterm birth was 28.0 but the
crude RR was only 16.6, and the stronger associa-
tion among multiparous mothers (crude OR=32.2 and
crude RR=20.4) compared to nulliparous mothers (crude
OR=23.4 and crude RR=13.1) suggested a possible inter-
action effect between these two factors. The large dif-
ference between the crude OR and RR suggests that the
adjusted OR estimated from a naive logistic regression
analysis would not be a reasonable approximation to the
adjusted RR.

The log-binomial and expanded data logistic regression
models provided similar estimates for the association of
neonatal jaundice with each of the factors studied, except
for a somewhat larger estimate for the association with
overweight from the expanded data logistic regression
model. Both models identified premature delivery as a
strong risk factor for neonatal jaundice, with an estimated
relative risk of approximately 13-fold among nulliparous
mothers and 20-fold among multiparous mothers (see
Table 3). Compared to infants of mothers with mater-
nal BMI below 25, infants of overweight mothers (BMI
> 25) had an approximate 20%-26% higher risk of neona-
tal jaundice. Multiparity was associated with a decreased
risk. Despite the low prevalence of the outcome in this
population, the OR from a naive logistic regression model
considerably overestimated the RR for preterm birth,
almost by a factor of 2 for nulliparous mothers and 1.5
for multiparous mothers. Similar estimates were obtained
by analysing the matched case-control sample using the
weighted logistic and expanded data weighted logistic
regression models, by incorporating the sampling weights
(see Table 4).
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Fig. 3 Estimated RR from expanded data logistic regression across 2000 simulations scenarios with different levels of prevalence and true RR values,
compared to estimates from a naive logistic regression and the (true) log-binomial model. Estimates are presented for the full cohort data (panel A)
and for matched case-control samples (panel B) with 1:1 (clear boxes) and 1:2 (shaded boxes) case:control ratio

Discussion

Despite the attractive properties of the RR, there has
been wide adoption of methods for estimating the OR,
due in part to its mathematical and statistical proper-
ties, such as the reciprocity with respect to the choice
of reference group [23] and the avoidance of predicted
probabilities greater than 1. But the OR also has some
unattractive properties not shared by the RR. Although

the Mantel-Haenszel RR can be computed for simple tab-
ular data, the more general log-binomial regression model
for estimating an adjusted RR is not as widely known as
the corresponding logistic regression model for estimat-
ing an adjusted OR. As a result of this familiarity, and
the straightforward interpretation and ease of communi-
cation of the RR, investigators often present an adjusted
OR as an approximation to the adjusted RR for rare out-
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comes. This has been further encouraged by articles in  appropriate, and a recent tutorial article on best prac-
the medical literature that continue to present the ORasa  tice encourages researchers to examine their results in
feature of the case-control study design [24, 25], although  more than one way [5] when there are valid alternatives.
there are methods of sampling that offer estimates of RR  We have provided such an alternative, the doubling-of-
[26]. In addition to non-rare outcomes, there are other cases approach, that is intuitively appealing and utilises
situations where the RR estimate may be useful or more  the familiar logistic regression model after a simple modi-
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Table 3 Adjusted ORs estimated using naive logistic regression, and adjusted RRs from log-binomial and expanded data logistic
regression analysis, using data from a cohort study of neonatal jaundice. In addition to covariates in the table, estimates are adjusted

for sex of infant, maternal age and smoking status

Variables Naive logistic Log-binomial Expanded data
logistic
OR (95% Cl) RR (95% Cl) RR (95% Cl)
Preterm: nulliparous 23.5(22.4,245) 12.9(12.5,13.3) 0(126,134)
Preterm: multiparous 32.5(30.8,34.2) 20.1 (194, 20.9) 20.4(196,21.2)
Overweight: BMI > 25 0(1.26,1.34) 1.20(1.17,1.23) 6 (1.23,1.30)
Multiparous 0.50 (0.48,0.52) 0.51(0.50,0.53) 0.51(0.49,0.53)

fication to the data. Although it has been known for some
time that this method provides a valid adjusted RR from
cohort or cross-sectional data, the standard error of the
estimate is not available from statistical software pack-
ages. In this paper, we first provided an introduction to
this method in the context of cohort or cross-sectional
data, and then extended the approach to data collected
in a case-control design, deriving a robust estimate of the
standard error. In contrast to the optional use of weighted
logistic regression to improve precision or enable estima-
tion of coefficients of matching factors [16, 27], a weighted
analysis is required for valid estimation of a RR from
case-control data. Where the case-control study has been
implemented in a well-defined population or cohort, these
weights are easily available from simple frequency distri-
butions. To make the method accessible to data analysts,
we have implemented it as an R package (available from
https://github.com/nyilin/DoublingOfCases) that seam-
lessly estimates adjusted RRs from cohort, cross-sectional
and case-control studies.

Using simulated data, we demonstrated that the
expanded data weighted logistic regression of a case-
control sample, with or without matching, produced sim-
ilar estimates to the adjusted RR estimated from the full
cohort. Our simulation studies also demonstrated the
overestimation of a RR by the OR from a simple logis-

tic regression model, even when the outcome is rare,
especially for strong effects. In contrast, the weighted
logistic regression model of the expanded data generated
valid estimates for the RR, even for common outcomes.
Our proposed robust SE for the RR estimated from case-
control data performed well in estimating the variability
of the adjusted RR.

In an application to neonatal jaundice, we found a pos-
itive association with preterm birth (which was stronger
among multiparous mothers) and maternal overweight,
and a negative association with multiparity, consistent
with the literature [22, 28]. Although it is often assumed
that the OR is a reasonable approximation for the RR
when studying a rare outcome, this example demonstrated
that the OR can considerably overestimate the RR of a rare
event when assessing a very strong association: although
the prevalence of the outcome (neonatal jaundice) in the
cohort was only 3.9%, the adjusted ORs for preterm (23.5
and 32.5 among nulliparous and multiparous mothers,
respectively) were considerably larger than the adjusted
RRs estimated from log-binomial regression (12.9 and
20.1) or expanded data logistic regression (13.0 and 20.4).

In our simulation study, we encountered a practical
difficulty that is known in the implementation of log-
binomial regression models in statistical software pack-
ages: the algorithm may fail to converge. In our sim-

Table 4 Adjusted ORs estimated from weighted logistic regression and adjusted RRs estimated from expanded data weighted logistic
regression models, using data sampled in a 1:2 case-control design from the infant cohort, matched on infant sex and maternal age. In
addition to covariates in the table, estimates are adjusted for smoking status

Variables Weighted logistic

Expanded data
weighted logistic

OR (95% CI) RR (95% ClI)
Preterm: nulliparous 23.8(22.7,24.9) 13.1(12.3,13.9)
Preterm: multiparous 32.5(309,343) 20.5(19.1,21.9)
Overweight: BMI > 25 1.32(1.26,1.39) 1.28(1.23,1.33)
Multiparous 0.50(0.48,0.52) 0.51 (049, 0.53)
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ulation scenario of moderate effect (true RR=2) and
high prevalence (40%), the log-binomial regression failed
to identify valid starting values for the coefficients in
more than 70% of the iterations. While this could be
resolved by using crude RR estimates as starting values
(data not shown), such issues may not be so easily over-
come in practice. For example, Deddens and Petersen
[29] created a simple numerical example with outcome
Y = (0,0,0,0,1,0,1,1,1,1) and a single exposure X =
1,2,3,4,5,6,7,8,9,10), where the R implementation (via
the gim function) failed to converge even when the true
estimates were used as starting values. This difficulty, and
sometimes inability, to reach convergence in maximising
the likelihood of the log-binomial regression model, has
been widely discussed in the literature [12, 15], and a
computationally expensive approach to alleviate the prob-
lem has been made available in SAS [30]. An alternative
approach that avoids convergence issues when estimating
the RR is the Poisson regression model (with robust SE),
which has a similar good performance to that of expanded
data logistic regression when applied to cohort data [12,
15], or to case-control data that incorporates sampling
weights (see Fig. 5 in Appendix). The Poisson regres-
sion model approximates the binomial distribution of the
binary outcome using a Poisson distribution, whose sta-
tistical properties may not be familiar to many applied
data analysts, making them reluctant to embark on such
an analysis. In contrast, the doubling-of-cases approach
is easily accessible as it leverages on the simple equiv-
alence between the RR from the original data and the
OR from the expanded data that is common to crude
and adjusted analyses, and uses one of the most common
analytical tools in epidemiology, the logistic regression
model.

A potential practical limitation of the doubling-of-cases
method for matched case-control data is that it is neces-
sary to know the sampling fractions within the matching
strata, as these are needed to enable the analysis to ‘recon-
struct’ the background population/cohort from the case-
control sample. The availability of this information will
depend on whether the case-control study was conducted
within a well-defined population, the nature and extent
of the matching factors and the available data resources.
Where a study is conducted using national or regional
health registers, and cases and controls matched on basic
demographic data (such as sex and age category), then
the necessary information will be available from popula-
tion statistics offices. The sampling fractions will also be
known for studies that identify cases and controls from
electronic medical records. However, the necessary data
may be difficult or impossible to obtain for case-control
studies that are implemented in the course of clinical work
in low-resource settings with limited data infrastructure.
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Another limitation of the doubling-of-cases approach,
in common with Poisson regression, is the potential bias
in the estimated In(RR) when some subjects have esti-
mated probabilities greater than or equal to 1. In the
small numerical example from Deddens and Petersen [29]
mentioned above, both the Poisson regression and the
expanded data logistic regression had estimated proba-
bilities larger than 1 for the 9th and 10th observations
and both methods overestimated the RR to some extent:
compared to the correct estimate (with 95% CI) of 1.23
(1.01 - 1.51), the Poisson regression with robust SE esti-
mated the RR as 1.38 (1.13 - 1.70) and the expanded
data logistic regression estimate was 1.44 (1.14 - 1.82).
Although our illustrative example did not have large esti-
mated probabilities (maximum 0.71), RR estimates are
also known to be potentially biased when estimating a
strong association with exposure [15], as occurred in the
expanded data logistic regression analysis of the very
strong association of prematurity with neonatal jaundice.
Although the doubling-of-cases approach may result in
some bias in the estimates of the RR in such settings, it
can still be used by data analysts as a simple first approach.
Large estimated probabilities may suggest that the log-
linear assumption is inadequate, in which case the regres-
sion analysis should consider transformations of continu-
ous covariates and/or interactions between covariates to
more appropriately model the underlying data-generating
mechanism.

Conclusions

As a result of the method presented in this paper and
the provision of a software package for its implemen-
tation, investigators can choose whether to report an
adjusted OR or RR, or both, regardless of the study design.
The method offers a simple and formal way of justifying
the reporting of an adjusted OR as an approximate RR,
regardless of the prevalence. Another important advan-
tage is that it facilitates the comparison of findings to
published RRs and the inclusion of estimates in meta-
analyses that may be challenged by the mixed reporting of
OR and RR.

Appendix
Tables 5 and 6 present the detailed simulation results that
were visualised in Fig. 4.

Figure 5 presents the results of a supplemental simula-
tion study, in which each simulated cohort was analysed
using Poisson regression, and each simple and matched
case-control sample using weighted Poisson regression
with inverse probability weighting. As illustrated in the
Figure, the performance of the (weighted) Poisson regres-
sion was comparable with the doubling-of-cases approach
in all scenarios investigated.
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Table 5 Bias, empirical SE (Emp. SE), mean SE, coverage, type | error and power of In RR from log-binomial and expanded data logistic

regression analysis of simulated cohort, with 2000 simulation iterations in each scenario

Prevalence TrueInRR Method Bias Emp. Mean Coverage Typel/
SE SE Power!
0.1 0 Log-binomial -0.001 0213 0211 954 46
Expanded data logistic -0.002 0214 0.211 954 46
0.223 Log-binomial -0.001 0.202 0.201 952 214
Expanded data logistic -0.001 0.202 0.201 95.2 21.7
0405 Log-binomial 0.002 0.194 0.194 95.0 56.5
Expanded data logistic 0.002 0.194 0.194 95.2 564
0.693 Log-binomial 0.000 0.185 0.185 95.8 96.0
Expanded data logistic 0.000 0.185 0.185 95.6 96.0
0.2 0 Log-binomial -0.005 0.136 0.139 95.8 42
Expanded data logistic -0.006 0.137 0.139 956 44
0223 Log-binomial -0.002 0.131 0.131 95.6 39.1
Expanded data logistic -0.002 0.132 0.132 953 39.1
0405 Log-binomial 0.004 0.126 0.126 953 89.3
Expanded data logistic 0.004 0.126 0.126 953 89.2
0.693 Log-binomial 0.002 0.122 0.120 94.9 100
Expanded data logistic 0.002 0.122 0.120 94.6 100
0.3 0 Log-binomial -0.004 0.102 0.104 953 4.7
Expanded data logistic -0.004 0.103 0.105 95.3 46
0.223 Log-binomial -0.001 0.096 0.098 94.8 63.1
Expanded data logistic -0.001 0.098 0.099 95.0 613
0405 Log-binomial -0.003 0.094 0.094 952 989
Expanded data logistic -0.003 0.095 0.095 94.7 98.7
0.693 Log-binomial -0.002 0.092 0.088 934 100
Expanded data logistic -0.002 0.093 0.089 937 100
0.4 0 Log-binomial -0.001 0.081 0.082 95.6 44
Expanded data logistic -0.002 0.082 0.084 953 4.7
0223 Log-binomial -0.005 0.074 0.076 95.8 81.6
Expanded data logistic -0.005 0.077 0.078 95.2 794
0.405 Log-binomial? -0.002 0.074 0.072 937 100
Expanded data logistic -0.002 0.076 0.073 93.8 100
0.693 Log-binomial® -0.017 0.067 0.067 952 100
Expanded data logistic 0.002 0.068 0.068 95.3 100

Values reported in this column are the type | error when true In RR = 0 and power otherwise.
Based on 1998 simulation cycles where the log-binomial regression converged.
3Based on 568 simulation cycles where the log-binomial regression converged
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Table 6 Bias, empirical SE (Emp. SE), mean SE, coverage, type | error and power of In RR from expanded data weighted logistic

regression analysis of simulated case-control data, with 2000 simulation iterations in each scenario

Design Prevalence True InRR Bias Emp. Mean Coverage Typel/
SE SE Power!
Simple 0.1 0.000 0.015 0.299 0.289 94.7 52
case- 0223 0.006 0.284 0.280 95.0 12.7
control 0.405 0.011 0.282 0.273 93.7 34.5
0.693 0.010 0.269 0.26 94.1 764
0.2 0.000 -0.004 0174 0.178 95.8 4.3
0223 0.001 0171 0.170 95.0 268
0405 0.004 0.165 0.164 94.8 70.9
0.693 0.002 0.156 0.155 95.0 99.0
03 0.000 -0.003 0.123 0.125 95.5 4.5
0223 -0.002 0.117 0.118 95.0 46.7
0.405 -0.004 0.115 0.113 94.6 939
0.693 -0.001 0.108 0.104 93.8 100
04 0.000 -0.002 0.089 0.091 952 4.8
0.223 -0.004 0.084 0.085 95.6 729
0405 -0.003 0.082 0.080 94.4 99.8
0.693 0.002 0.072 0.072 94.8 100
Matched 0.1 0.000 0.007 0.287 0.283 952 4.7
case- 0223 0.000 0.280 0.274 95.6 139
control 0405 0.011 0.262 0.268 95.7 339
0.693 0.008 0.256 0.257 95.5 784
0.2 0.000 -0.004 0.173 0.175 953 4.7
0223 -0.004 0.167 0.168 95.2 263
0.405 0.007 0.163 0.162 94.6 732
0.693 0.008 0.158 0.154 94.8 99.5
0.3 0.000 -0.003 0.121 0.123 953 4.7
0223 0.001 0.115 0.117 95.0 48.7
0405 0.001 0.113 0.112 94.6 94.2
0.693 0.001 0.107 0.105 95.0 100
04 0.000 -0.001 0.090 0.091 95.0 49
0223 -0.005 0.084 0.085 95.8 724
0.405 -0.002 0.083 0.081 93.5 99.8
0.693 0.003 0.074 0.075 96.0 100

Values reported in this column are the type | error when true In RR = 0 and power otherwise
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