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Optimal Sampling Strategies for Two-Stage Studies

Marie Reilly

The optimal allocation of available resources is the concern of every investigator in choosing a study design.
The recent development of statistical methods for the analysis of two-stage data makes these study designs
attractive for their economy and efficiency. However, little work has been done on deriving two-stage designs
that are optimal under the kinds of constraints encountered in practice. The methods presented in this paper
provide a means of deriving designs that will maximize precision for a fixed total budget or minimize the study
cost necessary to achieve a desired precision. These optimal designs depend on the relative information
content and the relative cost of gathering the first- and second-stage data. In place of the usual sample size
calculations, the investigator can use pilot data to estimate the study size and second-stage sampling
fractions. The gains in efficiency that can result from such carefully designed studies are illustrated here by
deriving and implementing optimal designs using data from the Coronary Artery Surgery Study (Circulation
1980:62:254-61). Am J Epidemiol 1996:143:92-100.

cost savings; data collection; epidemiologic methods; likelihood functions; models, statistical; research
design

Traditionally, epidemiologists would choose a sim-
ple cross-sectional, cohort, or case-control design for
the acquisition of observational data, thereby enabling
straightforward sample size calculations and data anal-
ysis. It has been recognized for some time that the
power of a test of a simple relative risk or odds ratio
can be improved by sampling unequally from exposed
and nonexposed (or from case and control) subjects, if
the cost of ascertaining data is different for the two
groups (1). More recently, Nam and Fears (2) have
derived some optimal sampling plans for such tests in
matched case-control designs.

Typically, data on a large number of covariates are
gathered in epidemiologic studies, and a number of
these are of interest in the final analysis, as either risk
factors or confounders. Some covariates such as sex
and age can be ascertained easily and cheaply, while
others such as laboratory test results or radiographic
findings might involve considerable expense. Two-
stage designs (3) provide a means of reducing study
costs, by ascertaining data on some covariates only for
a subsample of study subjects. The first stage of a
typical two-stage study consists of the response vari-
able and some covariates for all study subjects, while
the second-stage data consist of any other covariates of
interest for a subsample of subjects. The second-stage
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sample is selected using stratified random sampling
within the strata defined by the variables available at
the first stage. For example, in a two-stage case-
control study, the second-stage sample consists of a
random sample of cases and a random sample of
controls. In contrast, a case-cohort study is a two-stage
design where the second-stage sample consists of all
cases and a random sample of controls. This paper
considers the general two-stage design, where data on
the outcome variable and some easily obtained covari-
ates are available for all study subjects, while the more
expensive covariates are ascertained only for the sub-
sample of second-stage subjects.

With the advent of methods that enable all of the
data (first-stage and second-stage) to be accommo-
dated in the analysis (3—5), two-stage designs offer the
possibility of a more economical study and more ef-
ficient estimates. Although Cain and Breslow (4) have
illustrated that balanced designs are more efficient
than case-control designs for a number of logistic
models, little work has been done on determining
sampling strategies that are optimal with respect to
cost and/or efficiency. The optimal "double sampling"
strategies of Buonaccorsi (6) are derived only for
random subsampling and require assumptions of nor-
mality. Tosteson and Ware (7) provide a means of
choosing between sampling plans when the "first-
stage" data consist of surrogates for outcome and
exposure and a logistic model is supposed.
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Sampling Strategies for Two-Stage Studies 93

In recent work, Reilly and Pepe (8) developed a new
"mean-score" method of analysis of two-stage data
that permits the derivation of explicit expressions for
sampling strategies to 1) maximize precision for a
given cost and 2) minimize cost for a fixed precision.
The mean-score estimates can be obtained by standard
regression analysis with suitable weights (see below),

NOTATION AND METHODS

although the variance of the estimates requires some
additional calculations. A description of the method
and an illustration of optimal sampling are presented
in this paper. An outline of the technical details
is provided in Appendix 1, and interested readers
are referred to the original article (8) for statistical
details.

The likelihood-based mean-score estimator, like the estimators of Cain and Breslow (4) and Flanders and
Greenland (5), makes use of all of the data (first-stage and second-stage) for the analysis. Let us designate the
outcome variable Y and the regression model Pp (Y\X), where X denotes the covariates of interest. The first-stage
covariates, Z, may include some components of X that we will label Xc because these components are complete
for all subjects. The second-stage covariates will be denoted X,, since these components are incomplete for all
subjects who were not sampled at the second stage. The covariates in the regression model, X = (XC,X,), will
be simply X, in the case where no components of X are ascertained at the first stage. This would happen, for
example, when Z consists only of surrogates for some components of X. Interest is focused on the estimation of
the parameter /3, which for a logistic regression model is the vector of adjusted log odds ratios.

The properties of the mean-score method have been derived for categorical Y and Z. It can be seen from
equation 1 in Appendix 1 that the mean-score estimate of £ can be found by using the weights [niZ^Y^yir^iZj,
y,)] in a statistical package that accommodates the regression model Pp (Y\X). Although the estimating equation
in expression 1 is the same as that used by Flanders and Greenland, the variance expression 2 differs from the
one that they derived using a pseudolikelihood approach. The simple form of our variance expression enables the
derivation of optimal designs, as discussed below. The first term of the variance of the mean-score estimator in
expression 2 represents the variance of the maximum likelihood estimator if second-stage covariates were
available for all subjects, so the second term represents a penalty due to incomplete sampling at the second stage.
The / term in expression 2 is the average information over all subjects in the population, while the Y term
involves, for each (Z,Y) stratum, the variance of the score function over all subjects in that stratum. The estimate
of the variance in equation 4 replaces these quantities by the corresponding sample mean (suitably weighted to
account for the second-stage sampling mechanism) and sample variances. Hence, to obtain the variance estimate,
the user needs to calculate the estimates (at 0 = $) of the score and information components in the (Z,Y) cells.
For the logistic regression model, these components can be expressed very simply in terms of the covariate values
and the predicted values from the model. For example, for the dichotomous event Y and the simple logistic model

• = P(Y=l) =

where /3 = (/30, /3,, fi^, the estimated score vector and information matrix are

d
y - #

and

1

X,

X,

X,2

X2

x,x2

*-2X,2

The predicted values TT are provided by most statistical packages, and the symmetry of the covariates in the
score and information estimates makes them easily accommodated in calculations.
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94 Reilly

OPTIMAL SAMPLING

Expression 2 for the variance of $ depends on the
sampling fraction of second-stage subjects in each
(Z,Y) cell, and on the variance of the score terms in
these cells. It is not surprising, then, that optimal
studies can be designed by an astute choice of the
second-stage sampling fraction in each of these cells.
What is considered "optimal" in any setting will de-
pend on the purpose of the study and on various
constraints such as budgetary considerations. The var-
ious optimal sampling strategies derived in the paper
by Reilly and Pepe (8) will be briefly discussed here,
while an outline of the technical details can be found
in Appendix 2.

The simplest expression arises in the situation where
the sizes of the first- and second-stage samples are
fixed and it is necessary to maximize the precision
(i.e., minimize the variance) of the estimator for some
component 0k of $ which is of primary interest. In this
case, the optimal sampling fraction, p'^, for the (Z,Y)
cell is given by equation 5. The optimal sampling
fraction for each (Z,Y) cell depends on the prevalence
of that cell in the population, pzy> and on the "weight-
ing factor," Wzr, for the cell. This weighting factor is
computed from the information matrix and the vari-
ance of the score within the cell, and hence reflects in
some sense the variability of subjects within the cell.
In the simple case of scalar /3, the optimal strategy is
to sample cell (Z,Y) with intensity proportional to the
standard deviation of the score in that cell. This is
similar to the traditional optimum allocation for strat-
ified sampling (9) with the variance of the score re-
placing the simple variance.

In many practical settings, investigators choose a
two-stage design because of budget limitations. Let us
suppose that the total budget available for the study is
B. Denoting the cost of each first-stage observation C,
and the additional cost of ascertaining second-stage
data for a subject C2, clearly B = nC} + n^C2, where
n is the total number of subjects and n^ is the number
of second-stage subjects. With the budget fixed at B,
the optimal design is now the study size n and the
second-stage sampling fractions p'ZY which minimize
the variance of £fr These optimal values are given by
equation 6. Note that the expression for p'^ is the same
as before, except that [B - nCl]/C2 replaces r^. Since
Cx is the unit cost of first-stage data (gathered for all
subjects), B — nCr represents the funds available for
second-stage data, so [B - nC^\IC2 is the "affordable"
second-stage sample size. Hence, the optimal p'^ for a
fixed budget has this affordable sample size replacing
the fixed n2 in the previous example.

hi the planning stages of a study, the investigator
may wish to estimate the budget required in order for
the study to yield a meaningful result. For simple
observational studies, minimal sample size require-
ments are calculated based on some desired power or
precision. In practice, these precision requirements
may be relaxed to keep the cost of the study within
reasonable limits. The analogue of this for a two-stage
study is the determination of the overall sample size
and second-stage sampling fractions required to
achieve a specified precision at minimal cost. The
equations in expression 7 in Appendix 2 present the
expressions for such an optimal design, where the
study cost is minimized subject to the standard devi-
ation of j}k being fixed at 8.

The solutions to equations 5-7 may yield some
second-stage sampling fractions p^y > 1. In this case,
the largest p ^ say p^y, is set equal to 1 (i.e., all
subjects in cell (Z^y,) are included in the second-
stage sample) and the remaining second-stage subjects
are sampled optimally from the other cells. This is
accomplished for equation 5 by replacing r^ with ^ -
niZ^Yj) and using summation over {(Z,Y) # (Z,,!',)}
in the denominator. If the solution stih1 yields a
sampling fraction greater than 1, the process is
repeated. For equations 6 and 7, summation is again
taken over {(Z,Y) ± (ZX,YX)} and C, is replaced by
Ct + Crfz Y so that the cost of those second-stage
subjects who will definitely be sampled is being
viewed as part of the first-stage costs. This makes
intuitive sense, since these costs are independent of
the second-stage sampling intensities. Note that for
equation 6, B — nCx will be replaced by B — nCl —
n(Zj, YX)C2, which is the remaining funds which are to
be optimally allocated to the cells (Z,Y) # (Zi.F,), so
again the second-stage subjects who are to be sampled
with probability 1 are treated as part of the first-stage
costs.

In addition to the parameter j3 and the prevalences
pZY of the cells, the optimal designs discussed above
depend on the information matrix / and on the variance
of the score in the various cells. These quantities will
be unknown at the study design stage. Hence, deriving
an optimal design in a practical situation requires that
estimates of a number of quantities be available from
previous work or from pilot data. This is similar to the
usual problem of calculating sample size, where esti-
mates of prevalence or variance are required. In the
examples presented in the following section, pilot
samples are taken in order to estimate the components
that determine the optimal second-stage sampling frac-
tions. The resulting designs, which are approximations
of the true optimal designs, result in significant im-
provements in precision or reductions in cost.
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Sampling Strategies for Two-Stage Studies 95

DATA EXAMPLES

To illustrate how the sampling strategies above
might be used in practice, we will use data from the
Coronary Artery Surgery Study (CASS) registry (4,
10, 11) in the following examples. Briefly, this regis-
try collected detailed information regarding treatment
and outcome on approximately 25,000 patients who
underwent coronary arteriography at 15 cooperating
sites in the United States and Canada. Enrollment be-
gan in 1974 and continued until May 1979. Follow-
up data were collected through May 1983. We will
limit our attention to a subset of 8,096 patients who
underwent bypass surgery and consider operative mor-
tality the outcome of interest. The number and proportion
of these 8,096 subjects in each of the strata defined by
sex and mortality is given in table 1.

Example 1

Let us suppose that only the information presented
in table 1 is available. It is now proposed that we
ascertain the age for a second-stage subsample of
subjects so that age and sex can be assessed as inde-
pendent risk factors for mortality. Let us suppose that
sampling of these second-stage data involves non-
trivial effort (e.g., chart review) and that resources are
available for sampling only 1,000 subjects. If the sec-
ond-stage sample is a simple random sample, it can be
analyzed using standard methods to obtain asymptot-
ically unbiased estimates. If the second-stage sample
is a stratified random sample from the strata defined
by sex and mortality, a mean-score analysis could be
used to obtain valid estimates. The question arises as
to how this second-stage sample might be chosen in
order to maximize the precision of the estimates of
interest.

The proportion of the 8,096 subjects in each (Z,Y)
cell provides a good estimate of the prevalence, pZY.
To estimate the other components of the optimal sam-
pling fractions, it is reasonable to use a small portion
of the available resources to take a pilot sample from
the four strata. Taking a random sample of 25 subjects
from each cell, a mean-score analysis using logistic

TABLE 1. Distribution, by sex and operative mortality, of
8,096 patients from the Coronary Artery Surgery Study who
underwent bypass surgery between 1974 and 1983

Males (Z = 0) Females (Z = 1)

Number of subjects
Alive (V = 0) 6,666
Deceased (Y = 1) 144

Proportion of subjects
Alive (Y = 0) 0.823
Deceased (Y = 1) 0.018

1,228
58

0.152
0.007

regression to model operative mortality as a function
of age and sex gives coefficients /30(intercept) =
-5.06, /3 = 0.022, and 0 ^ = 0.674. (This analysis
and the calculations described below were carried out
using programs written in the GAUSS (Aptech Sys-
tems Inc., Kent, Washington) programming language.)
The information matrix, /, can be estimated using the
predicted values, TT, from the logistic model and the
covariate information on the 100 subjects in the pilot
sample. The (i, j) component of the information con-
tribution of an individual is -fr(l - it)X^Xj, where Xt

and Xj denote the values of the /th and 7th covariate for
the individual, with Xl = 1 (the intercept in the mod-
el), X2 = age, and X3 = sex. The information matrix
/ is simply a weighted average of the individual infor-
mation contributions. The score vectors for each of the
100 subjects are calculated as shown above in "Nota-
tion and Methods"; the ith component of the score
vector for an individual is X,{Y — #). The sample
variance-covariance matrix of the score is calculated
separately for each group of 25 subjects to give the
V(Z,Y) matrices in the weighting factors W^. Assum-
ing that the objective is to maximize the precision of
the coefficient of sex (i.e., [k,k] = [2,2]), the optimal
sampling fractions of equation 5 subject to n = 8,096
and «2 = 1,000 can be calculated from the estimates of
/3, pZY, and [W^y^- The values of [WZY]22 found from
the above calculations are displayed in table 2. The
denominator in the optimal sampling fractions of
equation 5 is now seen to be

0.823X

+ 0.018X

The optimal sampling fractions can now be found
simply by dividing (n2/n)V[W/r

Zy]22 by 0.1779, and
these fractions are displayed in table 2. Two of these

TABLE 2. Calculation of optimal sampling fractions from a
pilot sample of 100 subjects from the Coronary Artery
Surgery Study*

Males (Z = 0) Females (Z - 1)

n
PZY

n
PZY

PZY

Alive (Y=0)
6,666
0.823

0.0058
0.053

Deceased (Y = V

144
0.018

13.392
2.541

1,228
0.152

0.0203
0.099

58
0.007

15.659
2.748

* PZY and P^Y Indicate the cell prevalences and sampling frac-
tions, respectively.
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96 Reilly

values are greater than 1. The largest value is set equal
to 1, and the remaining fractions are recalculated as
explained above in "Optimal Sampling." The resulting
value for p^j = 2.838, so the cycle is repeated once
more to obtain the final design shown in table 3. We
see that the optimal strategy is to sample all of the
subjects in the sparse cell and small proportions of the
others. A second-stage sample of 1,000 subjects was
selected from the cohort using this sampling strategy,
and a simple random sample was also selected for
comparison. The achieved sample sizes for the simple
random sample are included in table 3. Table 4 pre-
sents the estimates and standard errors obtained from
a mean-score analysis of these data, where an analysis
of the random subsample only is included for compar-
ison. As would be expected, inclusion of the first-stage
data in the analysis of the random second-stage sample
results in an improvement in the precision of the
estimates. A further marked reduction in all standard
errors is achieved by optimal sampling of the second-
stage data. In fact, when optimally sampling 1,000
subjects at the second stage, the precision achieved is
almost as good as that obtainable from an analysis
of the full "population" of 8,096 subjects (standard
errors = 0.540, 0.009, and 0.161).

Example 2

As a less trivial example, we shall use the same data
and consider the setup discussed by Cain and Breslow
(4) where, in addition to mortality and sex, a surrogate
covariate (categorical weight) is available at the first
stage, while the true covariate (weight) is to be ascer-
tained at the second stage, together with a number of
other risk factors of interest. The breakdown of the
first-stage sample by outcome and the six exposure
strata (defined by sex and weight category) is pre-
sented in table 5, and as before, the proportion of
subjects in each cell will be used below to estimate the
prevalence Pzy.

Let us assume that our objective is to fit the same
model as in Cain and Breslow's paper, and that re-
sources are available with which to sample 1,000
second-stage subjects in order to ascertain the detailed
covariate information (weight, age, unstable angina,

TABLE 3. Optimal sampling fractions (>'„ and sample sizes
n£** for a second-stage sample of 1,000 subjects from the
Coronary Artery Surgery Study*

Males (Z - 0) Females (Z = 1)

n
PZY

n

PZY

Alive (Y=0)
6,666
0.089

593
842

Deceased (Y = 1)

144
1.00
144
20

1,228
0.166

204
127

58
1.00

58
11

• The achieved sample sizes for a simple random sample of
1,000 are denoted by n?".

congestive heart failure score, left ventricular end di-
astolic blood pressure, and urgency of surgery). We
will also assume that we are principally interested in
blood pressure as an independent risk factor, so we
wish to maximize the precision of this component of
the vector of coefficient estimates. Let us suppose that
it had been decided a priori to take a pilot sample of 10
subjects from each of the strata defined by the first-
stage data. In other work (12, 13), samples of this size
have been shown to give reasonable estimates. Taking
all eight subjects from the stratum that has only eight
and 10 subjects from each of the remaining strata,
estimates of the coefficients in the logistic model are
obtained using the mean-score method. These esti-
mates, together with estimates of the Wzy, are used to
estimate the optimal sampling fractions for the second
stage (see table 6), subject to an overall second-stage
sample size of 1,000.

The optimal sampling strategy in this example is to
sample at the second stage all of the cases and a
varying proportion of controls in the various exposure
strata. A second-stage sample was selected using this
design, and the results of analysis are presented in
table 7. The analysis of a simple random sample of
1,000 second-stage subjects is included for compari-
son. We see that the inclusion of the first-stage data in
the analysis of the random second-stage sample results

TABLE 4. Coefficients (/J) from 1) logistic regression analysis of the random subsample only, 2) mean score analysis of the
random subsample, and 3) mean-score analysis of the optimal subsample

Constant
Age
Sax

* SE, standard error.

Random
( n -

P
-8.431

0.081
1.030

subsample
1,000)

SE«

1.385
0.023
0.401

Mean-score:
If) = 8,098, n2

P
-8.734

0.085
0.496

random
= 1.000)

SE

1.400
0.023
0.192

Mean-score:
(n = 8,096, n2

P
-7.360

0.061
0.645

optimal
= 1,000)

SE

0.595
0.010
0.164
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Sampling Strategies for Two-Stage Studies 97

TABLE 5. Numbers of subjects from the Coronary Artery
Surgery Study, stratified by operative mortality, sex, and
weight

Sex and weight (kg)

Males
<60
60-70
^70

Females
<60
60-70
£70

Total

Alive

160
1,083
5,418

440
407
378

7,886

Deceased

8
33

103

18
26
14

202

TABLE 6. Optimal sampling fractions for a second-stage
sample of 1,000 subjects from Coronary Artery Surgery Study

Sex and weight (kg)

Males
>60
60-70
£70

Females
<60
60-70
£70

Alive

0.092 (14)»
0.40 (418)
0.05 (262)

0.118(50)
0.101 (40)
0.064 (23)

Deceased

1.00 (8)
1.00 (30)
1.00(101)

1.00(17)
1.00 (25)
1.00(12)

* Numbers in parentheses, sample size.

in an improvement in the precision of all but one of the
coefficients. Almost all of these standard errors can,
however, be halved by an optimal choice of the 1,000
subjects at the second stage. In addition, the optimal
sampling scheme enables us to detect a significant
effect due to left ventricular end diastolic blood pres-
sure which was not apparent from the random second-
stage data.

Example 3

In the above examples, the acquisition of the sec-
ond-stage sample is a matter of subsampling from a
fixed number of available first-stage subjects. Another

realistic setting is one where the design of the study
(both first and second stage) is determined prior to
data collection and is conditional on budgetary con-
straints. To examine such a situation, let us consider
again the model in example 2 and derive the total
study size and second-stage sampling fractions that
will optimize the precision of the effect of left ven-
tricular end diastolic blood pressure. The optimal
study design for a total budget of $10,000 will be
compared under two cost structures:

1. Assume that the cost of each first-stage observa-
tion is $1.00, while gathering the second-stage
data costs an additional $0.50 each. This repre-
sents a situation where access to the study sub-
jects is the main cost, while the additional cost
per covariate ascertained is comparatively low.

2. Assume that the cost of a first-stage observation
is $1.00 but the cost of a second-stage observa-
tion is an additional $5.00. This represents a
situation where first-stage data are readily avail-
able (e.g., in a database), but the collection of
second-stage data involves considerable effort
and expense.

Using the same pilot sample of 10 observations per
stratum as in the previous example, the optimal sam-
pling schemes for these two cost structures are found
from the equations in expression 6 and are presented in
table 8. We see that for situation 1, the optimal design
requires that a total of 8,854 subjects be enrolled in the
study and that full covariate information be obtained
on all cases and most (91 percent) of the male controls
in the 60- to 70-kg weight category, with a lower
sampling intensity (11-27 percent) for the remaining
controls. In contrast, if the detailed covariate informa-
tion is expensive as in situation 2, the optimal scheme
is for a smaller study {n = 6,602) and less intensive
sampling of controls at the second stage (in this ex-
ample, the sampling intensity of controls is approxi-
mately one third that found in situation 1).

TABLE 7. Coefficients (0) from 1) logistic regression analysis of the random subsample only, 2) mean score analysis of the
random subsample, and 3) mean-score analysis of the optimal subsample

Sex
Weight
Age
Unstable angina
CHF* score
LVEDBP*
Urgency of surgery

Random subsample

P

0.745
0.0002
0.064
1.391
0.275
0.002
0.947

= 1,000)

SE'

0.569
0.021
0.030
0.527
0.259
0.033
0.481

Mean-score:
(n = 8,088, n2

P
0.200

-0.014
0.055
1.260
0.401

-0.013
0.791

random
= 1,000)

SE

0.265
0.014
0.026
0.416
0.198
0.024
0.496

Mean-score:
(n - 8,088, n2

P
0.279

-0.012
0.052
0.170
0.262
0.020
1.053

optimal
= 1,000)

SE

0.216
0.008
0.012
0.311
0.097
0.012
0.208

• SE, standard error, CHF, congestive heart failure; LVEDBP, left ventricular end diastolic blood pressure.
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98 Reilly

TABLE 8. Optimal first-stage sample sizes and second-stage
sampling fractions for a budget of $10,000, where C1F the cost
per first-stage observation, is $1.00 and C2 denotes the cost
per observation at the second stage

Sex and weight (kg)

Males
<60
60-70
>70

Females
<60
60-70
£ 7 0

C2

In

Alive

0.21
0.91
0.11

0.27
0.23
0.14

= $0.50
= 8,854)

Deceased

1.0
1.0
1.0

1.0
1.0
1.0

C2

If

Alive

0.07
0.30
0.04

0.09
0.08
0.05

= $5.00
= 6,602)

Deceased

1.0
1.0
1.0

1.0
1.0
1.0

DISCUSSION

The methods presented in this paper will enable
investigators to design two-stage studies that will es-
timate the effect of a risk factor as precisely and
economically as resources allow. Both case-control
and cohort data are accommodated at the first stage. In
addition to study design, this method could also be
useful in a completed (or ongoing) study where im-
portant covariate information is missing for a large
number of subjects and the information in the sample
is inadequate to answer the research question of inter-
est. By considering the incomplete observations as the
second-stage sample, optimal sampling methods could
be used to select a subsample of subjects on whom to
ascertain data for the missing covariates. In this way,
the study can be made to yield a useful result for a
minimal additional cost.

Although a logistic regression model will often be
of interest for epidemiologic applications, the above
methods can accommodate any likelihood function for
a categorical outcome variable, and thus are applicable
to a wide variety of estimation problems. Further work
is required to extend the methods to accommodate
continuous covariates at the first stage, and to derive
designs that will offer simultaneous optimal estimation

of more than one parameter. It is encouraging to note
in the data examples shown that the designs which
were optimal with respect to one parameter achieved
an improvement in the precision of almost all param-
eters.
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APPENDIX 1

Asymptotic Results

If complete information on X was available for all subjects, the maximum likelihood estimator of /3 would be
found by solving the score equation

n

2 ,\X^ = 0,

where Sp(Y\X) = (d/d/3) log Pp(Y\X) and n is the total number of subjects in the study. The expectation-
maximization (EM) algorithm (14) for finding the maximum likelihood estimator from incomplete data involves
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the maximization (conditional on the available data) of the expected log likelihood—i.e., the iterative maximi-
zation of

log/yy,|x,) + 2mog{pP(Yj\X)}W, Yjt zj],

where S2 denotes the second-stage sample and /3° the current estimate. The mean-score method estimates the
expectation in the second term by the sample average, so the mean-score estimate solves the equation

where S%Y> denotes the members of S2 with Z = Zj and Y = Yj and rv^ZpYj) denotes the number of such subjects.
This estimating equation can also be written as

\x) = 0, (i)

where n(Z,-,y,) is the total number of subjects with Z = Zt and Y = Y,. In the paper by Reilly and Pepe (8), the
asymptotic distribution of the mean-score estimator, $, is shown to be normal with mean /3 and variance

v($) = r 1 + rxrr\ (2)
where the information / = E[- (d2/d/32) log (P3(li^)}] and

f } , (3)
zr P™

with summation being over distinct (Z,Y) strata. The proportion of subjects in the stratum (Z,Y) is denoted by Pzy,
and p'ZY denotes the second-stage sampling fraction of those subjects. A consistent estimator of the variance of
the estimate is given by

(4)
n

where

and rii(Z,Y) = n(Z,Y) - rv^ZX)- "Var" indicates the sample variance, and /p(Y,|X,) is the usual information,
-O2/a/32) log Pp(Y\X).

APPENDIX 2

Optimal Designs

Fixed n and n2

Using the derivative of V(/3*) with respect to p'ZY and a Lagrangian multiplier to accommodate the condition
2 PZYPZY

 = (fh/n)> m e value of p'zy which minimizes V(/3t) subject to fixed n and n^ is found to be

n2

n
(5)
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100 Reilly

where [ ] t t denotes the (kjc) element of a matrix, W^ = rlV(Z,Y)r\ and V(Z,Y) = \ar[Sp(Y\X)\Y^\.

Fixed budget B

Minimization of V(/3t) with respect to n and p'ZY subject to B = n(C2 2 Pzyp'zr + Q ) results in three equations
in n, p'zy and the Lagrangian multiplier. Solving for n and p'ZY yields

- l

(6)

and

Fixed precision

Denoting the fixed standard deviation of fik by S, from expression 2

s i r r - n , ' v PzrO ~ Pzr) r i

Differentiation with respect to n and pZY yields two further equations, where again a Lagrangian multiplier
accommodates the restriction on 8. Solving for n and p'ZY gives

n —

and

P z r -

where /, = / — 2 2 y pzyV(Z,}/), the information in the first-stage data.

(7)
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