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LOGISTIC REGRESSION ANALYSIS AND EFFICIENT DESIGN FOR
TWO-STAGE STUDIES1

KEVIN C. CAIN AND NORMAN E. BRESLOW

This commentary concerns epidemio-
logic studies in which the disease status
and the exposure of primary interest are
ascertained for a large group of subjects.
However, information about covariables,
needed to control the relation between ex-
posure and disease for confounding effects,
is collected only for a smaller sample that
may be limited in size by the costs of subject
selection and covariable measurement or
because the requisite data are missing from
the records. Two questions are raised: 1)
How does one conduct the statistical analy-
sis so as to make use of all available infor-
mation for the estimation of covariable-
adjusted exposure effects? and 2) How does
one select the subsample, if indeed it is
within the investigator's power to do so, so
as to maximize the amount of information
it provides? Four examples will illustrate
the fundamental problem.

1. Occupational exposures. Suppose that
employment records and basic medical rec-
ords are available for all employees of a
large chemical company. From these rec-
ords, it is relatively easy to determine
whether an employee has had substantial
exposure to a particular toxic chemical and
whether or not he or she has developed the
disease in question. However, personal in-
terviews are needed to determine cigarette
and alcohol consumption, and because of
cost considerations, it is only possible to
conduct such interviews (in person or by
proxy) for a sample of the chemical work-
ers.
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2. Secondary analysis. Suppose that data
from a large case-control study show what
appears to be a significant relation between
a risk factor and the disease. However,
some important confounding risk factors
were not measured in the original study,
either by accidental omission or because
the data were initially gathered for another
purpose. We wish to go back and collect the
needed information on a subsample of the
original study group.

3. Two-stage case-control design. Suppose
that the cost of ascertaining exposure and
outcome is inexpensive (e.g., telephone in-
terviews) relative to the cost of obtaining
detailed covariate measurements (e.g., in-
person interviews). Then a two-stage de-
sign in which exposure and outcome are
determined for a large sample but co-
variates are only measured on a smaller
sample may be much cheaper than a one-
stage design of comparable power.

4. Missing data. Suppose that the data
come from a large disease register and that
the outcome and the variable of interest are
known for virtually all subjects. However,
one of the important covariables is missing
for the majority of the subjects. If we are
willing to make certain assumptions about
the randomness of the missing observations
which are considerably less stringent than
that they be missing "at random" for the
sample as a whole, then we can use the
methods described below to analyze the
data.

A valid strategy to follow in the first
three examples would be to select random
samples of the diseased and nondiseased
subjects from the original sample and then
analyze the sampled data using logistic
regression as if these were the only data
available. This will result in unbiased esti-
mates of exposure effects, but it may be
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highly inefficient, for two reasons. First, it
ignores the extra information from the
first-stage sample, namely, the disease and
exposure status of all study subjects, in-
cluding those for whom the values of the
covariables are unknown. Second, this type
of second-stage sample (referred to below
as the case-control sample) may not be the
most efficient design. For example, if ex-
posure is relatively rare, this type of sample
will give a very small number of exposed
cases and controls, and a more powerful
analysis may be achieved by oversampling
the exposed cases.

White (1) addressed the question of how
to analyze such two-stage data for the re-
stricted situation in which there is a single
binary exposure variable and the confound-
ing variables are discrete with a finite num-
ber of values (see also Walker (2)). Her
solution is based on a weighted least-
squares approach. The solution presented
here, based on likelihood methods using
logistic regression, allows multiple expo-
sure and confounding variables, some or all
of which can be continuous-valued. If the
exposure variable is discrete and a separate
relative risk is to be estimated for each
exposure category, this method may be im-
plemented easily by making some simple
adjustments to the output from a standard
logistic regression program.

NOTATION AND ANALYSIS

At the first stage of data collection, Ni
cases (with D = 1 denoting the presence of
disease) and No controls (with D = 0) are
sampled without knowledge of exposure
and are then classified into J exposure
classes or strata (S = 1, 2, . . . J). Let iVy-
denote the number of subjects with disease
status D = i and exposure stratum S = j .
The marginal or unadjusted relation be-
tween disease and exposure stratum can be
estimated from the data available at this

stage as OR; = (#uW>i)/(AWi). w h e r e

OR, denotes the odds ratio for disease in
exposure stratum; compared with exposure
stratum 1. These odds ratios are not ad-
justed for possibly confounding covariables,
however, and a second-stage sample is

drawn in which these covariables can be
measured.

At the second stage, re^ of the iV,, obser-
vations are sampled randomly for each
disease-exposure cell (i = 0, 1; j = 1, 2 , . . .
J ) . The sampling fraction ntj/Nij can be
different in the different cells.

For each observation in the second-stage
sample, we measure the covariables and
perhaps even obtain a more detailed mea-
surement of exposure. Let xijk denote the
vector of regression variables for the fcth
observation within the i/'th disease-
exposure cell (k = 1, 2, . . . riij) that will be
included in our logistic regression model: a
constant term, an exposure variable or vari-
ables (continuous or else indicators to rep-
resent discrete categories), the covariables,
and any interaction terms, including any
interactions between exposure and covari-
ables. Our model for the population is Pr(D
= 11 x) = 1/(1 + exp(-x'/3)), which is the
standard logistic regression model relating
the probability of disease to a vector of
covariates x.

Methods of analysis of data from a single
case-control sample using the logistic
model are well known to biostatisticians
and epidemiologists (3). The situation here
is more complicated since the sampling
fractions at the second stage may depend
on both disease and exposure. Methods of
analysis for such stratified samples have
been explored mainly by econometricians
(4, 5). An extension of this approach that
is applicable to the present two-stage sam-
pling problem was developed by Breslow
and Cain (6). We present here a description
and illustration of the analysis method de-
rived therein, referring readers who wish a
rigorous presentation of the mathematical
derivation to the original article. A similar
method is presented by Fears and Brown
(7), but their analysis does not account for
the extra information from the first-stage
sample, and hence the estimated variances
are incorrect.

Let us start with the simple situation in
which exposure is modeled as a categorical
variable with categories corresponding to
strata from which the second-stage samples
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for; = 2,

were drawn. The first J components of the
vector x for a given subject are x1 = 1, the
constant term; x2 = 1 if the subject is in
exposure stratum 2, and x2 = 0 otherwise;
. . . Xj = 1 if the observation is in stratum
J, and xj = 0 otherwise. Thus, for j = 2,
. . . J, ft is the log odds ratio for exposure
category j compared with exposure category
1. In this situation, one may use a standard
logistic regression program with the data
collected at the second stage to estimate /3
and its covariance matrix and then make
simple adjustments to get the corrected val-
ues, namely,

J, and

although this coefficient for the constant
term is not really meaningful if the first-
stage sample is a case-control sample. As
shown by Breslow and Cain (6), no adjust-
ment is necessary to the other components
of /3, that is, those that correspond to co-
variables in the model or to any interac-
tions between exposure effects and covari-
ables.

The estimated standard error of ft can
also be adjusted easily. Define

c* = (I/no, - 1/JVO1) + ( l /n n - l/Nn)

and

cjj = c* + (l/noy - l/NOj)
+ (1/ny - 1/Wy),

for j = 2, . . . J. Let V}; denote the square
of the estimated standard deviation of ft
obtained from the logistic regression pro-
gram. Then, for j = 2, . . . J,

T/(Adj) _ T/(Unadj) _
Vjj VJJ LJJ-

If there are more than two exposure cate-
gories, the covariance between the compo-
nents of /3 corresponding to two of the
indicator variables for exposure categories
(call them ft and ft-) is adjusted as

_ I7(Unadj) _ *
- Vjj. C .

The adjusted variance of the coefficient of
the constant term is

V$d» = VTHdi) - (c* + I/No + 1/AM,

and the covariance between o and 3. is

V(Adj) = yOJnadj) + ^ for • = ^ j

The standard errors for the components of
^ corresponding to covariables measured at
the second stage do not need adjustment,
nor do the covariances between exposure
variables and covariables.

The standard error of ft (for j = 2,
. . . J) is smaller after adjustment because
the unadjusted value uses only data from
the smaller second-stage sample, while the
adjusted ft also uses information from the
first stage to give a more accurate estimate.
It is plausible that the other components of
0 do not require adjustment, since only the
second-stage sample contains relevant in-
formation about these parameters.

If exposure is modeled as a continuous-
valued variable or variables, it is unfortu-
nately no longer possible to make simple
adjustments to the output from a standard
logistic regression program. All compo-
nents of |8 and its estimated covariance
matrix must be adjusted by means of matrix
calculations. The correct method of analy-
sis for this situation is described in the
Appendix.

EXAMPLES

Fisher et al. (8) used data from the Cor-
onary Artery Surgery Study to examine the
relation between sex and operative mortal-
ity in patients undergoing coronary artery
bypass surgery. Female sex appeared to be
a strong risk factor, with operative mortal-
ity being 1.9 per cent and 4.5 per cent for
men and women, respectively. However,
after adjustment for other covariables
which measured the severity of disease and
the size of the patient, sex was no longer
statistically significant.

We use these data from the Coronary
Artery Surgery Study to illustrate the two-
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stage design, with operative mortality as
the outcome and sex as the exposure vari-
able. Our analysis is clearly artificial in that
it only uses covariable information from
the patients in the second-stage sample,
although in fact the covariables are known
for the entire first-stage sample. Such two-
stage data could easily arise in practice,
however. Operative mortality and the ex-
posure of interest (e.g., sex of patient, use
of internal mammary or vein grafts, type of
anesthesia) may be easily available for a
large number of patients, while the covari-
ables are expensive to measure.

Table 1 shows the number of subjects in
the first-stage sample and in two different
second-stage samples. In one second-stage
design, referred to as the case-control sam-
ple, 100 cases (i.e., who died during surgery)
and 100 controls are randomly selected
without regard to sex. The fraction of cases
(and also controls) who are female is ap-
proximately the same as in the first-stage
sample. In the second-stage design, referred
to as the balanced design, 50 subjects are
randomly selected from each of the four
sex-mortality categories.

Table 2 shows the results of fitting a logistic regression model to each of the second-
stage samples and, for comparison, to the first-stage sample. For each second-stage
sample, the column labeled "unadjusted" is the output from a standard logistic regression
program run on the second-stage sample. Only the values in the first two rows, corre-
sponding to the constant term and to sex, need to be adjusted to account for the
information from the first-stage sample. For example, consider the adjustment to the
coefficient for sex in the case-control sample:

The unadjusted estimate of j82 from the
case-control sample gives an unbiased es-
timate of the true /32 since unbiased samples
of cases and controls were taken (notice
that the adjustment to p2 is small). The
unadjusted /32 from the balanced sample,
however, gives a biased estimate of (82 since
biased samples of cases and controls were
taken (notice that the adjustment to ft is
large). Thus, a valid analysis could be ob-
tained from the unadjusted estimates from
the case-control sample shown in table 2.
However, a great deal of power would be
lost if the information from the first-stage
sample were not used. Notice that the ad-
justed standard errors are much smaller
than the unadjusted ones, although they
are not as small as the standard error from
the full first-stage sample.

We next present an example in which
there are six exposure strata, defined by sex
and three weight categories, as shown in
table 3. A balanced second-stage sample
was selected with 20 subjects in each of the
12 mortality-weight-sex categories. Some
categories have fewer than 20 subjects since

= 0.650 + log((58 X 6,666 X 67 X 19)/(144 x 1,228 X 33 x 81))

= 0.650 + 0.040 = 0.690.

The adjustment to the estimated variance is
y(Adj) _ y(Unadj) _
V 2 2 V 2 2 C 2 2

= V<ynadj) - ((l/noi - 1/Noi) + (l/f»n - 1/Nn)
+ (l/n02 - 1/Nm) + (l/n12 - l/iV12))

= (0.348)2 - ((1/81 - 1/6,666) + (1/67 - 1/144)
+ (1/19 - 1/1,228) + (1/33 - 1/58))

= 0.121 - 0.085 = 0.036,

and the adjusted standard error is (0.036)1/2 = 0.190.
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TABLE 1

Sample sizes for Coronary Artery Surgery Study (8)
data relating operative mortality to sex in patients

undergoing coronary artery bypass surgery

Alive (D •-
Deceased

Alive
Deceased

Alive
Deceased

Male (S = 1) Female (S = 2)

First-stage sample

= 0) 6,666 1
(D = 1) 144

Second-stage sample: case-control

81
67

Second-stage sample: balanced

50
50

L.228
58

19
33

50
50

the number of subjects in the first-stage
sample with no missing covariables was less
than 20. Table 4 shows the results of a
logistic regression analysis in which weight
is modeled as a linear term. Since the model
does not include five indicator variables for
the six exposure strata, it is not possible to
use the simple calculations shown above to
get the adjusted values. Instead, the matrix
calculations shown in the Appendix must
be used. The adjusted standard error is
smaller than the unadjusted one for the two
exposure variables, sex and weight. The
adjustment also changes slightly the coef-
ficient and standard errors of the other
covariables.

In this second example, a crude measure
of exposure (i.e., weight category) is used

TABLE 2

Logistic regression coefficients (and standard errors) for the data in table 1

First-stage sample
Second-stage sample: case-control Second-stage sample: balanced

Unadjusted Adjusted Unadjusted Adjusted

Constant
Female sex
Average diameter

of coronary ar-
teries

Congestive heart
failure score

Priority of surgery
relative to
elective

Urgent
Emergency

-3.271 (0.285)
0.634 (0.171)

-0.065 (0.016)

0.445 (0.072)

0.706 (0.181)
2.004 (0.232)

-0.167 (0.615) -3.812 (0.594)
0.650 (0.348) 0.690 (0.190)

-0.030 (0.034)

0.395 (0.160)

0.631 (0.365)
2.605 (1.072)

0.990 (0.637) -2.845 (0.606)
-0.061 (0.301) 0.722 (0.189)

-0.080 (0.033)

0.348 (0.165)

0.412 (0.350)
1.853 (0.800)

TABLE 3

Sample sizes for Coronary Artery Surgery Study (8) data relating operative mortality to sex and weight

Weight <60 kg Weight 60-70 kg Weight >70 kg

Alive
Deceased

Alive
Deceased

Male

160
8

20
8

Female Male

First-stage sample

440
18

1,083
33

Female

407
26

Second-stage sample: balanced

20
16

20
20

20
20

Male

5,418
103

20
20

Female

378
14

20
11



LOGISTIC REGRESSION FOR TWO-STAGE STUDIES 1203

TABLE 4

Coefficients (and standard errors) from a logistic
regression analysis using a continuous-valued

exposure variable, based on data in table 3

Second-stage sample: balanced

Unadjusted Adjusted

Constant
Female sex
Weight
Age
Unstable angina
Congestive heart

failure score
Left ventricular

end diastolic
blood pressure

Urgency of surgery

-4.552 (1.502)
-0.122 (0.305)
-0.001 (0.014)

0.037 (0.018)
0.315 (0.262)

-6.316 (1.428)
0.311 (0.233)

-0.002 (0.011)
0.038 (0.018)
0.321 (0.265)

0.253 (0.148) 0.292 (0.153)

0.041 (0.021)
0.741 (0.251)

0.041 (0.021)
0.727 (0.256)

to define the strata in the first-stage sam-
ple, while a more detailed measure (i.e.,
weight) is used in the analysis of the
second-stage data. This same approach can
be used if the crude measure is known for
all subjects in the first-stage sample but the
detailed measure is only known for subjects
in the second-stage sample. However, the
analysis will be appropriate only if the re-
lation between risk and exposure is cor-
rectly modeled and risk does not depend on
the crude measure, conditional on the de-
tailed measure being known. In the second
example above, this will be true if the re-
lation between risk and weight is in fact
linear on the logistic scale and there is no
interaction between sex and weight.

EFFICIENCY OF SECOND-STAGE DESIGNS

An efficient design is one that gives ac-
curate estimates of the parameters in the
model. Thus, the efficiency of a given de-
sign can be measured as the reciprocal of
the standard error of the parameters of
interest. An example of relative efficiencies
can be seen in table 2, which shows that
the standard error of the coefficient for sex
is much smaller in the adjusted analysis of
the case-control design (0.190) than in the
unadjusted analysis of this design (0.348).
Thus, the adjusted analysis is much more
efficient than the unadjusted analysis, even

though, as noted above, both analyses are
valid. It is clear that failure to use the
information in the first-stage sample can
lead to a large loss of efficiency. How large
this loss is will depend on how large the
first-stage sample is relative to the second-
stage sample. Extreme loss of efficiency will
only occur if Nij/nij is very large for all i
and j . With a rare disease, it is probably
more common to have a design in which
the second-stage sample consists of all the
cases from the first stage, plus a small
fraction of the controls. Thus, NOj/n<yj is
large but Nij/n^ equals 1 for all ;. In this
situation, the ratio of standard errors be-
tween the adjusted and the unadjusted
analyses will be approximately (%)1/2. The
example in tables 1 and 2 shows an effi-
ciency ratio that is somewhat better than
this since Nij/ny is somewhat bigger than
lfory = 1,2.

Suppose that n, the total number of sub-
jects to be selected for the second-stage
sample, is fixed by budgetary constraints.
How should these n subjects be allocated
among the 2J disease-exposure categories?
Define the balanced design as follows:
Choose equal numbers in each category
(i.e., riij = n/2J for i = i, 2; j = 1, . . . J) if
possible. If Nij < n/2J for any i, j , choose
riij = N^ and increase the other n,/s ap-
proximately equally. We propose that this
balanced design should usually be used
since it is easy to define and has good
efficiency.

Since we are most interested in evaluat-
ing the relation between exposure and dis-
ease, the main parameters of interest are
those corresponding to the exposure vari-
ables. Of secondary interest are the param-
eters corresponding to the other covariables
in the model and any possible interactions
between these covariables and exposure.
The balanced design is now compared with
two alternative designs: the case-control
design and the optimal design.

The adjusted standard errors in table 2
show that the case-control and balanced
designs have approximately equal effi-
ciency with respect to the parameter for
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sex. The two designs also have similar ef-
ficiencies for estimating the other covari-
ables in the model. Thus, in this example,
the two designs have very similar efficien-
cies, but is this true in general? Breslow
and Cain (6) examine this question by com-
paring the large sample efficiencies of the
balanced design and the case-control de-
signs for the simple situation with two ex-
posure categories and one binary covariate.
The results are shown in table 5. If the
second-stage sample contains all of the

TABLE 5

Large sample efficiencies of the balanced design
relative to the case control design''*

Relative efficiencies

Second-stage sample contains all the cases but only a
fraction of the controls from the first-stage sample

0.2
0.2
0.2
1.0
1.0
1.0
5.0
5.0
5.0

0.2
1.0
5.0
0.2
1.0
5.0
0.2
1.0
5.0

1.02
1.18
1.34
0.99
1.00
0.98
1.14
1.22
1.00

0.83
0.88
0.93
0.74
0.81
0.82
0.76
0.81
0.76

1.43
1.45
1.65
2.30
2.09
2.06
2.94
2.12
1.74

Second-stage sample contains a small fraction of both
cases and controls from the first-stage sample

0.2
0.2
0.2
1.0
1.0
1.0
5.0
5.0
5.0

0.2
1.0
5.0
0.2
1.0
5.0
0.2
1.0
5.0

1.37
4.35
3.56
0.71
1.00
1.05
1.84
3.72
1.36

0.68
1.01
1.47
0.71
1.01
1.05
0.78
1.01
0.83

4.41
3.51
3.30
5.77
4.08
3.90
6.48
4.10
3.44

* Abstracted from table 3 of Breslow and Cain (6).
t The coefficients j}u /32, and ft correspond to ex-

posure, the covariable, and the interaction, respec-
tively, and 6 is the degree of confounding between
exposure and the covariable, as measured by the odds
ratio in the control group.

$ Efficiencies are calculated for exp (/?,) = 2, Pr
(x, = 1|D = 0) = 0.05, and Pr(i2 = 1\D = 0) = 0.3.
Efficiencies for fii and /32 are based on fitting the
model with no interaction term (i3).

cases from the first stage, then with respect
to the exposure coefficient, the balanced
design is either somewhat more efficient or
approximately the same as the case-control
design, depending on the relative risks as-
sociated with exposure and the confounder
and the correlation between exposure and
the confounder.

If the second-stage sample contains only
a small fraction of both cases and controls
from the first-stage sample, the balanced
design is usually much more efficient than
the case-control design. The only situation
in which the case-control design is some-
what more efficient is if the relative risk
for the confounder is one and there is a
large negative correlation between expo-
sure and the confounder.

With respect to the coefficient on the
covariable, the case-control design is usu-
ally somewhat more efficient than the bal-
anced design. However, in terms of the
standard error of an interaction term (if
one were to be included in the model), the
balanced design is always much more effi-
cient than the case-control design. There-
fore, unless one is willing to make the very
strong assumption that no interaction is
present, the balanced design is to be pre-
ferred.

Breslow and Cain (6) also compare the
balanced design with the design which has
smallest standard error for estimating the
relative risk of exposure and show that, in
most circumstances of practical interest,
the balanced design is not seriously ineffi-
cient compared with the theoretical opti-
mum. In addition, the optimal design is
usually degenerate in that n,; = 0 for at
least one i and j . (This is not as unreason-
able as it at first seems, since the purpose
of the second-stage sample is to estimate
the effect of the covariable, and not all four
of the disease-exposure categories are nec-
essary to do this in a model with no inter-
action term.) Consequently, a degenerate
optimal design would never actually be used
in practice, especially since it has no power
for testing whether an interaction term
should be included in the model.
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CONCLUSIONS

We have proposed a method of analysis
for use with data in which the exposure of
interest and disease outcome are known for
a large number of subjects but information
on confounding variables is only known for
a smaller subsample. This type of data
arises frequently in practice, particularly in
studies of occupational health. The main
advantage of the proposed analysis method
is that it incorporates information from the
first-stage sample as well as the second-
stage sample. This can lead to a very large
improvement in efficiency relative to an
analysis that uses only the information
from the second-stage sample. This method
also makes possible the analysis of biased
sampling designs in which the sampling
fraction depends on both exposure and out-
come. It is thus possible to use designs such
as the balanced design which are poten-
tially more efficient than the case-control
design. By making simple adjustments to
the output from a standard logistic regres-
sion program, the analysis is easy to imple-
ment if the exposure variable is categorical.

This method can also be used in the
analysis of data in which some important
covariables are missing for a large fraction
of the observations. The standard analysis
used in this situation is to fit a logistic
regression model using only those obser-
vations with no missing values. The param-
eter estimates from such an analysis will be
unbiased only if the odds ratios for expo-
sure and covariables are the same for the
subsample with no missing values as they
are for the entire sample. An alternative
analysis would use the method presented
in this paper to incorporate information
from the entire sample. The necessary as-
sumption is that the probability that an
observation has missing values does not
depend on the value of the covariables,
although it can depend on exposure and
outcome. Any researchers considering this
approach should first think carefully about
whether this assumption is reasonable for
their data.
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APPENDIX

Users of the computer package GLIM (9) may be
familiar with the use of offsets in logistic regression.
An offset can be thought of as a variable that is
included in the model but whose coefficient^ is not
estimated but rather is forced to be equal to 1. It
can be shown (6) that the correct values of 0, adjusted
for the biased sampling at the second stage, can be
obtained by using an offset term of log(riyiVo;) -
\og{n<,jNij) for observations in stratum j . If exposure
is modeled via indicator variables corresponding to
strata, only the first J components of J3 will be affected
by this offset term. Use of an offset does not, however,
give correct values for the standard deviations. These
are obtained as follows.

Let xijh denote the p by 1 vector of covariates for
observation ijk (the fcth observation in they'th stratum
in the ith disease category). Let X denote the n by p
matrix whose ijkth row is x'ijh. Suppose we fit a logistic
regression model to the observations in the second-
stage sample, making adjustments for the biased sam-
pling by means of an offset. Let <&,> denote the pre-
dicted probability that observation ijk is diseased,
based on this model. Let V denote the n by n diagonal
matrix, whose diagonal elements are uy* = dy» (1 -
dijk). The covariance matrix from the logistic regres-
sion model, ignoring the information from the first-
stage sample, is (X' VX)'\
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For; = 1, 2, . . . J, let e, denote the n by 1 vector
which has 1 in rows corresponding to observations
from stratum j , and 0 elsewhere. Define the p by 1
vectors Wj = X'Ve, for ; = 1, . . . «/, and W =
2}li Wj. Define the p by p matrix

Breslow and Cain (6) show that an estimate of the
adjusted covariance matrix which takes account of
information from the first-stage sample is

(X'vx)-\x'vx- CKX'vxy1 = {X'vxy1 - c*,
where C* = (X'VXr'CiX'VX)". This covariance

matrix estimator is not always positive-definite. When
this occurs, an alternative estimator based on the
within-stratum sample covariance matrices of the
scores can be used (6).

It can be shown that if exposure is included in the
model as J — 1 indicator variables, corresponding to
the exposure strata, the matrix C is zero except for
the J by J elements in the upper left corner (see
proposition 3 of Breslow and Cain (6)). Thus, only the
variances and covariances corresponding to the con-
stant term and the exposure indicator variables need
to be adjusted; those corresponding to the covari-
ables need no adjustment. This makes sense intui-
tively, since all of the information concerning the
covariables is contained in the second-stage sample,
and the first-stage sample only contains additional
information about the exposure variables.


